www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionen" - Kardidoide
Kardidoide < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kardidoide: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 13:38 So 24.05.2009
Autor: SEBBI001

Aufgabe
Es ist C: p = 1 + [mm] cos\alpha [/mm] die Polarform einer Kardioide.
Nun sei t = [mm] tan(\bruch{\alpha}{2}) [/mm] Zeigen sie, dass die parametrische Koordinatenform von C
x = [mm] 2\bruch{1 - t^2}{(1 + t^2)^2} [/mm] und
y = [mm] \bruch{4t}{(1 + t^2)^2} [/mm] ist und berechnen Sie die Länge von C

Also ich hab die Gleichung in kartesischen  Koordinaten , die ist [mm] (x^2 [/mm] + [mm] y^2 [/mm] - [mm] x)^2 [/mm] = [mm] x^2 [/mm] + [mm] y^2 [/mm] (die war gegeben). Muss ich jetzt die parametrische Form da einsetzen? Das wäre ja eine riesige Rechnerei Und was soll dann am Ende rauskommen? Zur Längenberechnung hab ich keine Ahnung. Danke für eure Hilfe

        
Bezug
Kardidoide: Bogenlänge
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:11 So 24.05.2009
Autor: Martinius

Hallo,

zur Längenberechnung:

[guckstduhier]

[]http://de.wikipedia.org/wiki/L%C3%A4nge_(Mathematik)

LG, Martinius

Bezug
                
Bezug
Kardidoide: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:49 Mo 25.05.2009
Autor: SEBBI001

Danke, aber irgendwie kann ich damit nichts anfangen. Kann mir irgendwer einen Ansatz geben. Bitte!!!

Bezug
                        
Bezug
Kardidoide: Antwort
Status: (Antwort) fertig Status 
Datum: 17:25 Mo 25.05.2009
Autor: MathePower

Hallo SEBBI001,

> Danke, aber irgendwie kann ich damit nichts anfangen. Kann
> mir irgendwer einen Ansatz geben. Bitte!!!


Nun, der Radius der Kardioide ist gegeben durch

[mm]p=1+\cos\left(\alpha\right)[/mm]

Weiterhin ist

[mm]x=p*\cos\left(\alpha\right)[/mm]

[mm]y=p*\sin\left(\alpha\right)[/mm]

Um jetzt zur angegebenen Parameterdarstellung zu kommen, löse

[mm]t=\tan\left(\bruch{\alpha}{2}\right)[/mm]

nach [mm]\alpha[/mm] auf, und setze das dann
in die entsprechenden Gleichungen ein.


Gruß
MathePower

Bezug
                                
Bezug
Kardidoide: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:17 Di 26.05.2009
Autor: SEBBI001

Danke, das hab ich jetzt dank deines Hinweises rausbekommen. Und wie ist das nun mit der Länge??

Bezug
                                        
Bezug
Kardidoide: Antwort
Status: (Antwort) fertig Status 
Datum: 17:31 Di 26.05.2009
Autor: MathePower

Hallo SEBBI001,

> Danke, das hab ich jetzt dank deines Hinweises
> rausbekommen. Und wie ist das nun mit der Länge??


Nun, da mußt Du das Integral

[mm]\integral_{t_{1}}^{t_{2}}{\wurzel{ \left( \ \dot{x}\left(t\right) \ \right)^{2} + \left( \ \dot{y}\left(t\right) \ \right)^{2}}\ dt}[/mm]

auswerten.


Gruß
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de