www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gruppe, Ring, Körper" - Kartesische Produkt, Gruppe
Kartesische Produkt, Gruppe < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kartesische Produkt, Gruppe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:06 Sa 20.10.2012
Autor: theresetom

Aufgabe
Es seien [mm] G_1 [/mm] ,.. [mm] G_n [/mm] Gruppen.Beweisen SIe dass [mm] G_1 \times [/mm] .. [mm] \times G_N [/mm] mit der Verknüpfung [mm] (a_1,..,a_n) (b_1,..,b_n)=(a_1 b_1,.., a_n b_n) [/mm] eine Guppe ist.

Hallo,
Ich habe alles gezeigt außer die Assoziativität.
[mm] \forall [/mm] a,b,c [mm] \in G_1 \times [/mm] .. [mm] \times G_N [/mm]
[mm] ((a_1 [/mm] ,..., [mm] a_n) (b_1 [/mm] ,.. [mm] b_n) [/mm] ) [mm] (c_1,..,c_n)= (a_1 [/mm] ,..., [mm] a_n) ((b_1 [/mm] ,.. [mm] b_n) (c_1,..,c_n)) [/mm]
Stimmt es dass ich die obere Aussage zeigen muss?

Liebe Grüße

        
Bezug
Kartesische Produkt, Gruppe: Antwort
Status: (Antwort) fertig Status 
Datum: 16:08 Sa 20.10.2012
Autor: angela.h.b.


> Es seien [mm]G_1[/mm] ,.. [mm]G_n[/mm] Gruppen.Beweisen SIe dass [mm]G_1 \times[/mm]
> .. [mm]\times G_N[/mm] mit der Verknüpfung [mm](a_1,..,a_n) (b_1,..,b_n)=(a_1 b_1,.., a_n b_n)[/mm]
> eine Guppe ist.
>  Hallo,
>  Ich habe alles gezeigt außer die Assoziativität.
> [mm]\forall[/mm] a,b,c [mm]\in G_1 \times[/mm] .. [mm]\times G_N[/mm]
> [mm]((a_1[/mm] ,..., [mm]a_n) (b_1[/mm] ,.. [mm]b_n)[/mm] ) [mm](c_1,..,c_n)= (a_1[/mm] ,...,
> [mm]a_n) ((b_1[/mm] ,.. [mm]b_n) (c_1,..,c_n))[/mm]
>  Stimmt es dass ich die
> obere Aussage zeigen muss?


Hallo,

ja.

War das schon alles, was Du wolltest?

LG Angela


Bezug
                
Bezug
Kartesische Produkt, Gruppe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:22 Sa 20.10.2012
Autor: theresetom

Aufgabe
Es sei p eine Primzahk. beweisen Sie, dass [mm] \{a/p^n | a,n \in \IZ, n>= 0 \} [/mm] eine Untergruppe vo [mm] (\IQ, [/mm] +)

Danke, ich wollte nur sicher gehen .
Ich habe noch eine Frage du der obigen Aufgabe.

ZuZeigen: [mm] \forall [/mm] x,y [mm] \in \{a/p^n | a,n \in \IZ, n>= 0\} [/mm] gilt
[mm] xy^{-1} \in \{a/p^n | a,n \in \IZ, n>= \} [/mm]
Nun verstehe ich nicht was es bedeutet wenn x  [mm] \in \{a/p^n | a,n \in \IZ, n>=0\} [/mm] gilt ? Kann man dann x schreiben als x= [mm] a/p^n [/mm] oder wie?


LG


Bezug
                        
Bezug
Kartesische Produkt, Gruppe: Antwort
Status: (Antwort) fertig Status 
Datum: 16:26 Sa 20.10.2012
Autor: tobit09


>  Nun verstehe
> ich nicht was es bedeutet wenn x  [mm]\in \{a/p^n | a,n \in \IZ, n>=0\}[/mm]
> gilt ? Kann man dann x schreiben als x= [mm]a/p^n[/mm] oder wie?

Genau.

Bezug
                                
Bezug
Kartesische Produkt, Gruppe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:36 Sa 20.10.2012
Autor: theresetom

x, y [mm] \in \{a/p^n | a,n \in \IZ, n>= \} [/mm]
dann x= [mm] a/p_1^n [/mm]  und y= [mm] b/p_2^n [/mm]
x*y = [mm] a/p_1^n [/mm] * [mm] (b/p_2^n)^{-1} [/mm] = [mm] a/p_1^n [/mm] * [mm] (b^{-1}/(p_2^n)^{-1})= \frac{a b^{-1}}{p_1^n (p_2^n)^{-1}} [/mm]
Darf ich überhaupt so rechnen?
Warum sollte a [mm] b^{-1} [/mm] eine ganze Zahl sein?


Ich verstehe diese (wahrscheinliche) Untegruppe nicht ganz...

Bezug
                                        
Bezug
Kartesische Produkt, Gruppe: Antwort
Status: (Antwort) fertig Status 
Datum: 17:00 Sa 20.10.2012
Autor: tobit09


> x, y [mm]\in \{a/p^n | a,n \in \IZ, n>= \}[/mm]
>  dann x= [mm]a/p_1^n[/mm]  
> und y= [mm]b/p_2^n[/mm]

p ist eine feste Primzahl, n dagegen nicht fest.

Also haben x und y die Formen

     [mm] $x=a/p^{n_1}$ [/mm]
     [mm] $y=b/p^{n_2}$ [/mm]

für gewisse [mm] $a,b,n_1,n_2\in\IZ$ [/mm] mit [mm] $n_1,n_2\ge0$. [/mm]


Die Gruppenverknüpfung von [mm] $\IQ$ [/mm] ist die Addition, nicht die Multiplikation. Also ist x+(-y) zu betrachten anstelle von [mm] $x\cdot y^{-1}$. [/mm]


> Ich verstehe diese (wahrscheinliche) Untegruppe nicht
> ganz...

Nehmen wir mal das Beispiel p=3. Dann gehören alle Bruchzahlen, die sich mit einer 3er-Potenz im Nenner schreiben lassen, zur Untergruppe, z.B.

[mm] $0=\bruch0{3^0}, 1=\bruch1{3^0}, -1=\bruch{-1}{3^0}, 2=\bruch2{3^0},\ldots$ [/mm]
[mm] $\bruch13, -\bruch13, \bruch23, -\bruch23, \bruch43,\ldots$ [/mm]
[mm] $\bruch19, -\bruch19, \bruch29, -\bruch29, \bruch49,\ldots,\bruch{10}9,\ldots$ [/mm]
[mm] $\bruch1{27},\ldots$ [/mm]
[mm] $\ldots$ [/mm]

Nicht zur Untergruppe gehören dagegen die Bruchzahlen, die in gekürzter Form einen Primfaktor ungleich 3 im Nenner haben, z.B.

[mm] $\bruch12, \bruch16, \bruch{14}{55}\ldots$. [/mm]

Bezug
                                                
Bezug
Kartesische Produkt, Gruppe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:25 Sa 20.10.2012
Autor: theresetom

Danke nun verstehe ich das Bsp. um einiges besser.
Ich bezeichne die Menge als K.

ZuZeigen: [mm] \forall [/mm] x,y [mm] \in [/mm] K gilt x+(-y) [mm] \in [/mm] K

> [mm] x=a/p^{n_1} [/mm] $
> [mm] y=b/p^{n_2} [/mm] $
> für gewisse $ [mm] a,b,n_1,n_2\in\IZ [/mm] $ mit $ [mm] n_1,n_2\ge0 [/mm] $.

x+(-y)=x-y= [mm] a/p^{n_1} [/mm] - [mm] b/p^{n_2} [/mm] = [mm] \frac{ap^{n_2}+bp^{n_1}}{p^{n_1}p^{n_2}} [/mm] = [mm] \frac{ap^{n_2}+bp^{n_1}}{(pp)^{n_1 +n_2}} [/mm] = [mm] \frac{ap^{n_2}+bp^{n_1}}{(p)^{2n_1 +2n_2}} [/mm]

da [mm] n_1 \ge [/mm]  0 und [mm] n_2 \ge [/mm] 0 ist [mm] 2n_1 [/mm] + [mm] 2n_2 \ge [/mm] 0
und [mm] p^{n_2}+bp^{n_1} \in \IZ [/mm]
also [mm] \frac{ap^{n_2}+bp^{n_1}}{(pp)^{2n_1 +2n_2}} \in [/mm] K

Stimmt das?
Nun ist noch zuzeigen K [mm] \not= \emptyset [/mm]
Ja z.B [mm] \IZ \in [/mm] K, wenn n=0

Passt das ?
LG


Bezug
                                                        
Bezug
Kartesische Produkt, Gruppe: Antwort
Status: (Antwort) fertig Status 
Datum: 17:32 Sa 20.10.2012
Autor: tobit09


> ZuZeigen: [mm]\forall[/mm] x,y [mm]\in[/mm] K gilt x+(-y) [mm]\in[/mm] K
>  > [mm]x=a/p^{n_1}[/mm] $

>  > [mm]y=b/p^{n_2}[/mm] $

>  > für gewisse [mm]a,b,n_1,n_2\in\IZ[/mm] mit [mm]n_1,n_2\ge0 [/mm].

>
> x+(-y)=x-y= [mm]a/p^{n_1}[/mm] - [mm]b/p^{n_2}[/mm] =
> [mm]\frac{ap^{n_2}+bp^{n_1}}{p^{n_1}p^{n_2}}[/mm] =
> [mm]\frac{ap^{n_2}+bp^{n_1}}{(p\red{p})^{n_1 +n_2}}[/mm] =
> [mm]\frac{ap^{n_2}+bp^{n_1}}{(p)^{2n_1 +2n_2}}[/mm]

Das rot markierte p ist zu viel; entsprechend ist der nächste Schritt anzupassen.

> da [mm]n_1 \ge[/mm]  0 und [mm]n_2 \ge[/mm] 0 ist [mm]2n_1[/mm] + [mm]2n_2 \ge[/mm] 0
>  und [mm]\blue{a}p^{n_2}+bp^{n_1} \in \IZ[/mm]

Das blau markierte a hattest du vermutlich nur aus Flüchtigkeit vergessen.

>  also
> [mm]\frac{ap^{n_2}+bp^{n_1}}{(pp)^{2n_1 +2n_2}} \in[/mm] K
>  
> Stimmt das?

Ja (Bis auf das zu viel hineingeratene p alles folgerichtig). [ok]

>  Nun ist noch zuzeigen K [mm]\not= \emptyset[/mm]
>  Ja z.B [mm]\IZ \in[/mm] K,
> wenn n=0

[mm] $\IZ\subseteq [/mm] K$ meinst du.

> Passt das ?

Ja. [ok]

Bezug
                                                                
Bezug
Kartesische Produkt, Gruppe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:54 Sa 20.10.2012
Autor: theresetom

Vielen lieben dank !!! ;)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de