www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Trigonometrische Funktionen" - Kegelschnitt
Kegelschnitt < Trigonometr. Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Trigonometrische Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kegelschnitt: Verunsichert
Status: (Frage) beantwortet Status 
Datum: 18:22 So 24.06.2012
Autor: Lewser

Aufgabe
Welcher Kegelschnitt wird durch folgende Gleichung dargestellt:

[mm] 2y^2-9x+12y=0 [/mm]

Unter dieser Aufgabe steht als Hinweis, man solle die Gleichungen durch quadratische Ergänzung auf die Hauptform bringen.

Im Papula steht folgende Formel:

[mm] Ax^2+By^2+Cx+Dy+E=0 [/mm]

mit der folgenden Definition:

Kreis: A=B
Hyperbel: A*B < 0
Ellipse: A*B > 0
Parabel: A=0, B ungleich 0 oder umgekehrt

Also komme ich bei dem gegebenen Beispiel auf eine Prabel, was auch laut Lösung richtig ist. Nur frage ich mich bzgl. des Hinweises unter der Aufgabe, ob es so einfach sein kann oder nur ein Zufall ist.

        
Bezug
Kegelschnitt: Antwort
Status: (Antwort) fertig Status 
Datum: 18:29 So 24.06.2012
Autor: Diophant

Hallo Lewser,

> Welcher Kegelschnitt wird durch folgende Gleichung
> dargestellt:
>
> [mm]2y^2-9x+12y=0[/mm]
> Unter dieser Aufgabe steht als Hinweis, man solle die
> Gleichungen durch quadratische Ergänzung auf die Hauptform
> bringen.
>
> Im Papula steht folgende Formel:
>
> [mm]Ax^2+By^2+Cx+Dy+E=0[/mm]
>
> mit der folgenden Definition:
>
> Kreis: A=B
> Hyperbel: A*B < 0
> Ellipse: A*B > 0
> Parabel: A=0, B ungleich 0 oder umgekehrt
>
> Also komme ich bei dem gegebenen Beispiel auf eine Prabel,
> was auch laut Lösung richtig ist. Nur frage ich mich bzgl.
> des Hinweises unter der Aufgabe, ob es so einfach sein kann
> oder nur ein Zufall ist.

Nun, auf die Regeln im Papula zu kommen, das ist alles andere als einfach. Der Spezialfall Parabel macht da eine Ausnahme: für den Fall A=0 und [mm] B\ne{0} [/mm] oder umgekehrt entsteht eine quadratische Funktion (die aber auch vom Typ f: y->x(y) sein kann). Wenn man mal voraussetzt, dass deren Schaubild eine Parabel ist (was so selbstverständlich nicht ist, denn was ist eine Parabel geometrisch?), dann folgt die Erkenntnis unmittelbar.

Du hast es also richtig beantwortet, genauer ist es eine liegende Parabel, die nach rechts geöffnet ist. Und die Hinweise sind natürlich kein Zufall (Der Papula ist gespickt mit sehr guten Hinweisen, da aber so gut wie nichts hergeleitet wird, mag das manchmal zufällig ausschauen).


Gruß, Diophant

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Trigonometrische Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de