www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integralrechnung" - Kegelstumpf
Kegelstumpf < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kegelstumpf: Integrationsgrenzen?
Status: (Frage) beantwortet Status 
Datum: 22:06 Sa 20.09.2008
Autor: Mandy_90

Hallo,

ich soll das Rotationsvolumen des folgenden Kegelstumpfes berechnen.
Das ist ja nicht mehr wirklich schwer,weil die Integrationsgrenzen schon gegeben sind unzwar [mm] a=\bruch{r*h}{R-r} [/mm] und [mm] b=\bruch{R*h}{R-r}. [/mm]
Meine Funktion ist ja hier die Ursprungsgerade f(x)=x.
Ich versteh aber nicht so ganz,wie man auf diese Integrationsgrenzen kommt.
Auch wenn ich mir die Zeichnung anschaue erkenn ich keinen Zusammenhang,warum [mm] \bruch{r*h}{R-r}=a [/mm] und [mm] \bruch{R*h}{R-r}=b [/mm] sein sollen,sind da vielleicht irgendwelche Strahlensätze angewendet worden oder wie kommt man drauf?
[Dateianhang nicht öffentlich]

Vielen dank für eure Hilfe

lg

Dateianhänge:
Anhang Nr. 1 (Typ: JPG) [nicht öffentlich]
        
Bezug
Kegelstumpf: Antwort
Status: (Antwort) fertig Status 
Datum: 22:35 Sa 20.09.2008
Autor: Teufel

Hallo!

Wenn die Randfunktion wirklich f(x)=x ist, dann erscheinen mir die Grenzen etwas kompliziert aufgeschrieben.

a=r und b=R sollte es dann heißen.

Deine Grenzen sollen wohl eher für alle Ursprungsgeraden mit der Form f(x)=mx sein!

Und ja, da kannst du mit dem Strahlensatz rangehen.

[mm] \bruch{r}{a}=\bruch{R}{a+h} [/mm] wäre er in seiner ersten Form. Daraus kannst du dann a bestimmen! Ähnlich schaffst du das auch mit b.

[mm] \bruch{R}{b}=\bruch{r}{b-h} [/mm]

[anon] Teufel

Bezug
                
Bezug
Kegelstumpf: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:54 Sa 20.09.2008
Autor: Mandy_90

Hallo,

mir fällt grad was auf,die Randfunktion ist nicht f(x)=x sondern [mm] f(x)=\bruch{R-r}{h}*x [/mm]

Treffen die Integrationsgrenzen denn dann zu und wenn ja warum?


Bezug
                        
Bezug
Kegelstumpf: Antwort
Status: (Antwort) fertig Status 
Datum: 23:05 Sa 20.09.2008
Autor: Teufel

Die beiden Strahlensatzansätze da gelten für alle Ursprungsgeraden, also alle Geraden der Form y=mx! Daher gilt das insbesondere auch für deine Funktion, da sie auch nur eine Ursprungsgerade ist.

[anon] Teufel

Bezug
                
Bezug
Kegelstumpf: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:25 Mi 24.09.2008
Autor: Mandy_90


> Hallo!
>  
> Wenn die Randfunktion wirklich f(x)=x ist, dann erscheinen
> mir die Grenzen etwas kompliziert aufgeschrieben.
>  
> a=r und b=R sollte es dann heißen.
>
> Deine Grenzen sollen wohl eher für alle Ursprungsgeraden
> mit der Form f(x)=mx sein!
>  
> Und ja, da kannst du mit dem Strahlensatz rangehen.
>  
> [mm]\bruch{r}{a}=\bruch{R}{a+h}[/mm] wäre er in seiner ersten Form.
> Daraus kannst du dann a bestimmen! Ähnlich schaffst du das
> auch mit b.


Irgendwie komm ich nicht auf [mm] a=\bruch{r*h}{R-r}, [/mm] sondern auf [mm] a=\bruch{R-rh}{r}.Kannst [/mm] du mir vielleicht zeigen,wie man auf [mm] a=\bruch{r*h}{R-r} [/mm] kommt?

Bezug
                        
Bezug
Kegelstumpf: Antwort
Status: (Antwort) fertig Status 
Datum: 18:00 Mi 24.09.2008
Autor: algieba

Hi

Ich habe einen Lösungsweg, vielleicht gibt es aber auch kürzere:

[mm] \bruch{r}{a}=\bruch{R}{a+h} \\ \\ \gdw r=\bruch{Ra}{a(1+\bruch{h}{a})} \\ \\ \gdw r=\bruch{R}{1+\bruch{h}{a}} \\ \\ \gdw r(1+\bruch{h}{a})=R \\ \\ \gdw r+\bruch{rh}{a}=R \\ \\ \gdw \bruch{rh}{a}=R-r \\ \\ \gdw rh=a(R-r) \\ \\ \gdw a=\bruch{rh}{R-r} \\ \\ [/mm]

Jetzt versuche es noch mit b

Gruß
algieba

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de