www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integrationstheorie" - Kegelvolumen
Kegelvolumen < Integrationstheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kegelvolumen: Tipp, Anfang, Idee
Status: (Frage) beantwortet Status 
Datum: 20:52 So 05.12.2010
Autor: Torste

Aufgabe
Sei [mm] E\subset\ \IR^2 [/mm] messbar und h>0. Der Kegel über E der Höhe h ist die Teilmenge [mm] K_E\subset\ \IR^3 [/mm] defniert durch [mm] K_E:=\bigcup_{(x,y) \in E}^{}(((x,y,0),(0,0,h))^-(das [/mm] soll oben so ein ganzer Querstrich sein!), wobei ((x,y,0),(0,0,h))^- die Strecke von (x,y,0) nach (0,0,h) ist. D.h. man legt E in die z=0 Ebene und verbindet jeden Punkt von E mit der Kegelspitze (0,0,h).

Zz: [mm] \lambda^3(K_E)=h/3*\lambda^2(E) [/mm]


Hallo ,
soweit ich das  richtig versteh, geht es in dieser Aufgabe darum eine Formel für das Volumen eines Kegels zu beweisen, die aben gerade die Grundfläche mal die Höhe durch drei beschreibt!
Aber wie ich das machen soll ist mir noch ein Rätsel - hat jemand einen Tipp für mich, weil ich momentan noch ziemlich ideenlos bin!??
Danke schonmal
Torste

        
Bezug
Kegelvolumen: Antwort
Status: (Antwort) fertig Status 
Datum: 06:49 Mo 06.12.2010
Autor: fred97

Tipp: Prinzip von Cavalieri

FRED

Bezug
                
Bezug
Kegelvolumen: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 23:40 Mo 06.12.2010
Autor: Torste

Hallo Fred,

dein Tipp ist höchstwahrscheinlich wichtig und sinnvoll, wir hatten Cavalieris Satz auch gerade die letzte Woche, aber leider ist mir der Einsatz dieses Satzes noch nicht klar.
Wir haben ihn so aufgeschrieben:
Seien E,F  [mm] \in B(\IR^{n+m}). [/mm] Falls [mm] \lambda^n(E_y)=\lambda^n(F_y) [/mm] für fast alle y gilt, so folgt [mm] \lambda^{n+m}(E)=\lambda^{n+m}(F). [/mm]
Anschaulich als Bsp hatten wir, dass falls die Schnittflächen zweier Körper in entsprechenden Höhen dieselbe Fläche haben, die beiden Körper dieselben Volumina haben.

Jetzt steht ja auf der linken Seite der zu zeigenden Gleichung gerade das Volumen über den ganzen Kegel mit der Grundfläche E und der Spitze h. Und das soll hetzt gleich einer zweidimensionalen Fläche, nämlich gerade der der Grundfläche E mal die Höhe durch drei sein.
Die Formel kennt man ja eigentlich schon aus der Sek 1...aber sie jetzt so zu beweisen!?
Ich weiß halt nicht, wie ich den Satz da jetzt anwenden soll, wenn ich mal bei der linken Seite so beginne:
[mm] \lambda^3(K_E)=\bigcup_{(x,y) \in E}^{}(((x,y,0),(0,0,h))^-d(x,y,z)=... [/mm]
Kann man das so schon mal anfangen oder ist das dann für die Benutzung des Satzes ungeeignet!?
Danke auf jeden Fall für den Tipp - so fange ich wenigstens endlich an über dies Zusammenhänge nachzudenken!
Torste


Bezug
                        
Bezug
Kegelvolumen: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 13:44 Di 07.12.2010
Autor: Torste

So - ich bin der Lösung näher - ich weiß jetzt worum es geht, aber wie soll cih denn [mm] \lambda^2(E) [/mm] berechnen?
Idee:
[mm] \integral_{\wurzel{z_0-x^2}}^{-\wurzel{z_0-x^2}}{x^2+y^2 dy} [/mm]
Mein Problem ist nur, dass ich da Null rausbekommen und das kann ja nicht sein, weil wir ja sozusagen einen Flächeninhalt ausrechnen und der existiert ja bei unserer Grundfläche E, oder!?
Auf der anderen Seite wollte ich für z die Integralgrenzen 0 und h nutzen - ich glaube das klappt auch soweit!
Gruß Torste

Bezug
                                
Bezug
Kegelvolumen: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:27 Do 09.12.2010
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
                        
Bezug
Kegelvolumen: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:22 Do 09.12.2010
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de