Kelvin / Celsius? < Physik < Naturwiss. < Vorhilfe
|
Hallo Leute
Ich habe da ein kleines Problem. Habe die Aufgabe, dass ein Eiswürfel 100 Gramm mit der Temperatur von -18 Grad Celsius in ein Wassertopf, 1 Liter mit der Temperatur 16 Grad Celsius geworfen wird. Welche Temperatur stellt sich ein? Mein Problem ist nicht das Aufstellen der Gleichung... aber irgendwie hab ich ein Durcheinander mit diesem Grad bzw Kelvin. Ich dachte mir ich rechne mit Kelvin, dann bin ich auf der sicheren Seite, aber hier merke ich, die Zahlen ändern sich, ob ich mit Kelvin oder Celsius rechne...und das Ganze ist für mich echt ein Rätsel...
Zeige euch mal meine Überlegungen
Gleichung gemäss Lösung:
c_eis * m_eis* 18 + [mm] q_s [/mm] *m_eis + c_eis *m_eis *T_Gesucht = c_wasser *m_wasser * (16-T_gesucht)
Was ich gedacht hab...diese 18 stellen für mich eine Temperaturdifferenz dar, also egal ob ich hier in Kelvin oder Celsisu rechne, die Differenz bleibt 18... bei mir steht dort 18 Kelvin. Dieses T_Gesucht, welches folgt...dort habe ich mir auch die Überlegung gemacht, das ist ja die Energie, die noch hinzugefügt werden muss, nach dem Schmelzen, bis die Mischtemperatur erreicht wird...also auch irgend ein Delta T...auch dort spielt es keine Rolle, ob ich mit Kelvin oder Celsius rechne. Das allerletzte Teil im 2. Teil ist zwar ein fixe Temperatursgrösse, aber wenn ich doch
den Term (16-T_gesucht) in (273+16 - T_Gesucht) umwandle...sollte das doch stimmen....da die Differenz wieder gleich ist...
Nur komme ich auf diese beiden Wege auf eine unterschiedliche Lösung...
Ich vermute einfach es liegt an diesem T_Gesucht, bei welchem es eine Rolle spielt, ob es in Kelvin oder Celsius angegeben ist...aber es ist mir echt ein Rätsel WIESO...kann mir das jemand irgendwie erklären?:)
Vielen Dank.
Liebe Grüsse
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 23:11 Sa 16.10.2010 | Autor: | chrisno |
Hallo,
wenn Du alles in Celsius rechnest, dann sollte das Ergebnis in Celsius herauskommen. Rechnest Du in Kelvin, dann sollte das Ergebnis in Kelvin herauskommen. Daher muss sich ein entsprechender Unterscheid ergeben.
Falls damit Dein Problem noch nicht gelöst ist, rechne bitte vor.
Allerdings finde ich, dass Du einen Fehler in der Formel hast. Auf der rechten Seite steht zuerst die Energie, die zum Erwärmen des Eises benötigt wird, dann die zum Schmelzen. Danach ist aus dem Eis aber Wasser geworden uned daher muss im dritten Term [mm] c_{Wasser} [/mm] stehen.
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 23:40 Sa 16.10.2010 | Autor: | Loddar |
Hallo Nicole!
Für mich ist es eindeutig, dass hier alles in Kelvin umgerechnet und eingesetzt werden muss. Denn Grad Celsius und Kelvin stimmen nur bei Differenzwerten überein.
Gruß
Loddar
|
|
|
|
|
Zuerst einmal vielen Dank euch beiden.
@chrisno...dort sollte es c_wasser heissen. Hab es falsch geschrieben, tut mir Leid.
Also ihr seit ja auch der Meinung, ob Kelvin oder Celsius. Irgendwie müsste es das Gleiche geben.
Laut Lösung (in Grad Celsius gerechnet):
c_eis * m_eis * 18 + [mm] q_s [/mm] * m_eis + c_wasser * m_eis * [mm] T_m [/mm] = c_wasser * m_wasser * [mm] (16-T_m)
[/mm]
1950 [mm] \bruch{J}{KgK}*0.1 [/mm] kg * 18 + 333000J * 0.1kg + 0.1kg [mm] *4187\bruch{J}{KgK} [/mm] * [mm] T_m [/mm] = 4187 [mm] \bruch{J}{KgK} [/mm] * 1kg * [mm] (16-T_m)
[/mm]
Dies ist die Lösung, wenn man das Ganze in Grad Celsius rechnet. Man kommt auf ein Ergebnis [mm] T_m [/mm] = 6.6 Grad Celsius.
Überlegungen zur Kelvin-Berechnung:
So nochmals als Erklärung. Ich gehe davon aus bei diesem 18 ... das wäre ja eine Temperaturdifferenz von -18 Grad Celsius auf 0 Grad. Egal ob hier Kelvin oder Grad Celsius steht. 18 ist dort die gesuchte Zahl. Das gesuchte [mm] T_m [/mm] lasse ich auch für die Kelvin Berechnung stehen. Nur die einzige Zahl, die ich abändere wäre die 16 Grad in der hintersten Klammer, dort würde ich 16 + 273 = 289
Also das Ganze schaut bei Kelvin so aus:
1950 [mm] \bruch{J}{KgK}*0.1 [/mm] kg * 18 + 333000J * 0.1kg + 0.1kg [mm] *4187\bruch{J}{KgK} [/mm] * [mm] T_m [/mm] = 4187 [mm] \bruch{J}{KgK} [/mm] * 1kg * [mm] (289K-T_m)
[/mm]
18 und das erste [mm] T_m [/mm] schaue ich als DELTA an...das hintere [mm] T_m [/mm] ist sozusagen eine fixe Temperatur. Ich vermute dass dort der Fehler liegt. Ich bekomme somit als Resultat [mm] T_m [/mm] auf alle Fälle nicht 6.6 Grad Celsius. Sondern irgendwie 254K oder so was.
Irgendwie stimmt das einfach nicht mehr. Ich hoffe, ihr versteht was ich da meine. Danke euch vielmals.:)
|
|
|
|
|
Hallo, deine Problem ist der Term
[mm] (16^{0}C-T_m) [/mm] bzw. [mm] (289K-T_m)
[/mm]
auf der rechten Seite der Gleichung,
es ist mit dem 2. Term zu rechnen, du hast ja bei der spezifischen Wärmekapazität von Wasser mit [mm] 4187\bruch{J}{Kg*K} [/mm] die Einheit Kelvin stehen, löst du nun die Klammer [mm] (16^{0}C-T_m) [/mm] auf, so kannst du doch nicht Grad Celsius und Kelvin kürzen, also rechne mit [mm] (289K-T_m)
[/mm]
Steffi
|
|
|
|
|
Danke dir.
Also bei mir wurde mit dem ersten Term, also mit Grad Celsius gerechnet. Da kommt man dann auch auf 6.6 Grad Celsius als Resultat. Gemäss der Lösung ist das der richtige Ansatz. Ich hätte auch mit diesen 289 Kelvin gerechnet, aber da kommt man nicht mehr darauf. :/
|
|
|
|
|
Hallo,
Eis:
- erwärmen von [mm] -18^{0}C [/mm] auf [mm] 0^{0}C
[/mm]
- schmelzen von Eis
- erwärmen von (jetzt) Wasser um [mm] \Delta T_E
[/mm]
Wasser:
- abkühlen um [mm] \Delta T_W=(16-\Delta T_E)
[/mm]
[mm] 1950\bruch{J}{kg*K}*0.1kg*18K+333000\bruch{J}{kg}*0.1kg+4187\bruch{J}{kg*K}*0,1kg*\Delta T_E= 4187\bruch{J}{kg*K}*1kg*(16-\Delta T_E)
[/mm]
[mm] \Delta T_E=6,55K
[/mm]
das Eis wird von [mm] -18^{0}C [/mm] auf [mm] 0^{0}C [/mm] erwärmt, geschmolzen und dann (Wasser) von [mm] 0^{0}C [/mm] um 6,55K auf [mm] 6,55^{0}C [/mm] erwärmt
das Wasser wird von [mm] 16^{0}C [/mm] um 9,45K auf [mm] 6,55^{0}C [/mm] abgekühlt
Steffi
|
|
|
|
|
Hallo Steffi
Ja, hier rechnest du dann über die Differenzen. Das ist ja genau das Problem das ich bei meinen Überlegungen habe. Liegt es bei meiner Berechnung daran, dass dieses [mm] T_m [/mm] einmal einen fixen Wert hat und einmal als Differenz betrachtet wird? Danke dir.
|
|
|
|
|
Hallo, ich denke, ich habe das Problem gefunden, das inzwischen geschmolzene Eis wird um [mm] \Delta T_E [/mm] auf [mm] T_m [/mm] (Mischungstemperatur in Grad Celsius) erwärmt, die Einheit von [mm] \Delta T_E [/mm] ist Kelvin, das Wasser wir um [mm] \Delta T_W [/mm] abgekühlt, was sich berechnet nach [mm] 16^{0}C-T_m, [/mm] das ist eine Temperaturdifferenz, die Einheit ist auch Kelvin, macht man die Probe mit [mm] T_m=6,55318...^{0}C [/mm] also [mm] \Delta T_E=6,55318...K [/mm] und [mm] \Delta T_W=9,44681...K, [/mm] so bekommt man eine wahre Ausage, Eis nimmt 39553,...J auf, Wasser gibt 39553,...J ab, Steffi
|
|
|
|
|
Ehm...aber wie kann ich da 16 Grad Celsius - einen Kelvin Wert rechnen? Da müsste ja dann alles nicht mehr stimmen...sorry, bin gerade echt verwirrt.^^
|
|
|
|
|
=) Nein klar...würde ich das hinbekommen...aber wenn ich doch den ganzen Term...mit 16 Grad Celsius ausrechne...
Gemäss Term von Steffi:
$ [mm] 1950\bruch{J}{kg\cdot{}K}\cdot{}0.1kg\cdot{}18K+333000\bruch{J}{kg}\cdot{}0.1kg+4187\bruch{J}{kg\cdot{}K}\cdot{}0,1kg\cdot{}\Delta T_E= 4187\bruch{J}{kg\cdot{}K}\cdot{}1kg\cdot{}(16-\Delta T_E) [/mm] $
Kann doch bei Delta [mm] T_E [/mm] nicht einfach Kelvin herauskommen, da ja 16...als Grad Celsius da drin steht...
|
|
|
|
|
Hallo, die Physik verlangt [mm] W_w=m*c*\Delta [/mm] T, wobei [mm] \Delta [/mm] T, eine Temperaturdifferenz, in Kelvin anzugeben ist,
bleiben wir zunächst beim Eis es erwärmt sich ja von [mm] 0^{0}C [/mm] auf die Mischungstemperatur [mm] T_m=6,55^{0}C [/mm] macht [mm] \Delta [/mm] T=6,55K,
das Wasser kühlt von [mm] 16^{0}C [/mm] auf die Mischungstemperatur [mm] T_m=6,55^{0}C [/mm] macht [mm] \Delta [/mm] T=9,45K,
du benötigst die Temperaturdifferenz des Wassers, also um wie viel Kelvin kühlt sich das Wasser ab, das berechnest du [mm] 16^{0}C-T_m [/mm] also [mm] 16^{0}C-9,45^{0}\hat=6,55K
[/mm]
der Term, der beim Wasser in der Formel steht [mm] (16^{0}C-T_m) [/mm] wird in der Klammer jeweils in Grad Celsius angegebn, es handet sich um eine Temperaturdifferenz, [mm] 16^{0}C [/mm] sind NICHT in Kelvin umzurechnen,
du verwechselst die Angabe der Temperatur in Kelvin bzw. die Angabe der Temperaturdifferenz in Kelvin
die Formel ganz sauber notiert:
[mm] 1950\bruch{J}{kg*K}*0.1kg*18K+333000\bruch{J}{kg}*0.1kg+4187\bruch{J}{kg*K}*0,1kg*(T_m-0^{0}C)_K= 4187\bruch{J}{kg*K}*1kg*(16^{0}C-T_m)_K
[/mm]
[mm] (T_m-0^{0}C) [/mm] und [mm] (16^{0}C-T_m) [/mm] sind Temperaturdifferenzen, die in K angegeben werden, was ich durch den Index gekennzeichnet habe,
Steffi
|
|
|
|
|
Hallo Steffi Ok, das macht Sinn. Aber Wieso darf ich diese 16 Grad eigentlich nicht in Kelvin umrechnen? ... dieses [mm] T_M [/mm] sollte doch dann auch als Kelvin herauskommen...oder was seh ich da falsch? Danke dir.
|
|
|
|
|
Hallo, wir schaffen das schon
das Eis erwärmt sich von [mm] 0^{0}C [/mm] auf [mm] 6,55^{0}C [/mm] macht eine Temperaturdifferenz von [mm] 6,55^{0}C-0^{0}C\hat=6,55K [/mm] oder das Eis erwärmt sich von 273K auf 279,55K macht eine Temperaturdifferenz von 279,55K-273K [mm] \hat=6,55K
[/mm]
das Wasser kühlt sich von [mm] 16^{0}C [/mm] auf [mm] 6,55^{0}C [/mm] macht eine Temperaturdifferenz von [mm] 16^{0}C-6,55^{0}C\hat=9,45K [/mm] oder das Wasser kühlt sich von 289K auf auf 279,55K macht eine Temperaturdifferenz von [mm] 289K-279,55K\hat=9,45K
[/mm]
du kannst also in deiner ursprünglichen Formel exakt schreiben:
für Eis [mm] (T_m-0^{0}C)
[/mm]
für Wasser [mm] (16^{0}C-T_m)
[/mm]
in der Klammer stehen alle Angaben in Grad Celsius, es handelt sich aber jeweils um Temperaturdifferenzen, die in KELVIN angegeben werden, es ist natürlich auch möglich alle Angaben in den Klammern in Kelvin zu schreiben (siehe oben) was aber alles komplizierter macht
für Eis [mm] (T_m-273K)
[/mm]
für Wasser [mm] (289-T_m)
[/mm]
rechnest du damit bekommst du [mm] T_m [/mm] in Kelvin raus
Steffi
|
|
|
|
|
Hehe danke dir. Ja ... das ists eben...wenn ich alles in Kelvin berechnen möchte...ich habe mir da überlegt...18 stellt ja die Differenz dar von -18 Grad Celsius zu 0 Grad Celsius... also das bleibt 18 ob Kelvin oder Celsius. Angenommen wir rechnen mit Kelvin weiter. Als nächstes ist da ein [mm] T_M, [/mm] das lasse ich so stehen. In der Klammer [mm] (16-T_M) [/mm] wandle ich es in [mm] (289-T_M) [/mm] um...
$ [mm] 1950\bruch{J}{kg\cdot{}K}\cdot{}0.1kg\cdot{}18K+333000\bruch{J}{kg}\cdot{}0.1kg+4187\bruch{J}{kg\cdot{}K}\cdot{}0,1kg\cdot{}\Delta T_E= 4187\bruch{J}{kg\cdot{}K}\cdot{}1kg\cdot{}(289-\Delta T_E) [/mm] $
aber da liegt einfach irgendwo nen Überlegungsfehler... aber wieso? Ich meine 18 stellt eine Differenz dar...ist ja egal ob Kelvin oder Celsius. Das erste [mm] T_M [/mm] stellt auch eine Differenz dar, auch dort egal ob Kelvin oder Celsius. Beim hintersten wandle ich alles in Kelvin um, also müsste es doch richtig rauskommen?:) Ich danke dir herzlich für deine Hilfe.:)
|
|
|
|
|
Hallo
im 1. Summanden steht 18K, korrekt
du schreibst auf der linken Seite der Gleichung [mm] \Delta T_E [/mm] du meinst damit die Temperaturdifferenz, die sich ergibt aus [mm] T_m-273K, [/mm] wobei [mm] T_m [/mm] die Mischungstemperatur ist,
auf der rechten Seite der Gleichung schreibst du in der Klammer [mm] (289-\Delta T_E) [/mm] das geht so nicht, du vermischt die Temperaturangabe 289K und die Temperaturdifferenz [mm] \Delta T_E [/mm] es sind aber zwei Temperaturangaben zu subtrahieren [mm] 289K-T_m, [/mm] um auf die Temperaturdifferenz zu kommen,
also in den Klammern [mm] (T_m-273K) [/mm] und [mm] (289K-T_m) [/mm] stehen die Angaben in Kelvin, werden zwei Temperaturangaben subtrahiert, so bekommst du eine Temperaturdifferenz
[mm] 1950\bruch{J}{kg*K}*0.1kg*18K+333000\bruch{J}{kg}*0.1kg+4187\bruch{J}{kg*K}*0,1kg*(T_m-273K)= 4187\bruch{J}{kg*K}1kg*(289K-T_m)
[/mm]
rechnest du mit dieser Formel, so bekommst du [mm] T_m=279,55K\hat=6,55^{0}C
[/mm]
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 17:15 So 17.10.2010 | Autor: | Nicole1989 |
Danke dir vielmals Steffi. So leuchtet es mir ein. Vielen vielen Dank.:)
|
|
|
|