www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Physik" - Keplerproblem
Keplerproblem < Physik < Naturwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Keplerproblem: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:56 So 27.05.2012
Autor: Vairus666

Aufgabe
Aufgabe 13) Schwerpunkts- und Relativkoordinaten Betrachten Sie ein System aus zwei
Massepunkten (Massen m1 und m2, Ortsvektoren r1und r2), die über eine Kraft F miteinander wechselwirken. Führen Sie Relativkoordinate
r = r1 - r2 (1)
und Schwerpunktskoordinate
R = m1r1+m2r2/M (2)
(mit der Gesamtmasse M = m1 + m2 ) ein.
(a) Leiten Sie aus den Newtonschen Gleichungen für r1 und r2 die entsprechenden
Gleichungen für r und R ab. Benutzen Sie dabei die reduzierte Masse
1/m = 1/m1 + 1/m2 (3)

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hallo zusammen,

bei der vorliegenden Aufgabe bestehen einige Unklarheiten.

Wie lauten überhaupt die Newtonschen Gleichungen für r1 und r2?
Soll ich diese dann in (1) und (2) einsetzen oder soll von ihnen (1) und (2) hergeleitet werden ?

Mir fehlt aus dem Skript jegliche Grundlage für die geforderte Herleitung. Deshalb kann ich auch mit keinerlei Lösungsvorschlag aufwarten.

Ich hoffe, dass mir jemand helfen kann.

Gruß Max

        
Bezug
Keplerproblem: Antwort
Status: (Antwort) fertig Status 
Datum: 13:16 So 27.05.2012
Autor: notinX

Hallo,

> Aufgabe 13) Schwerpunkts- und Relativkoordinaten Betrachten
> Sie ein System aus zwei
>  Massepunkten (Massen m1 und m2, Ortsvektoren r1und r2),
> die über eine Kraft F miteinander wechselwirken. Führen
> Sie Relativkoordinate
>  r = r1 - r2 (1)
>  und Schwerpunktskoordinate
>  R = m1r1+m2r2/M (2)
>  (mit der Gesamtmasse M = m1 + m2 ) ein.
>  (a) Leiten Sie aus den Newtonschen Gleichungen für r1 und
> r2 die entsprechenden
>  Gleichungen für r und R ab. Benutzen Sie dabei die
> reduzierte Masse
>  1/m = 1/m1 + 1/m2 (3)
>  Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  
> Hallo zusammen,
>  
> bei der vorliegenden Aufgabe bestehen einige Unklarheiten.
>  
> Wie lauten überhaupt die Newtonschen Gleichungen für r1
> und r2?

wenn Du sie benutzen sollst, könnte das ein Hinweis darauf sein, dass sie in der Vorlesung behandelt wurden. Ansonsten kannst Du sie auch selbst aufschreiben. Zwei Massen wechselwirken gravitativ. Dazu gibts ein Kraftgesetz, welches ebenfalls von Newton aufgestellt wurde.
Newtonsche Gleichungen sind Bewegungsgleichungen, also Glg. der Form:
[mm] $\frac{\mathrm d \vec p}{\mathrm d t}=\ldots$ [/mm]

> Soll ich diese dann in (1) und (2) einsetzen oder soll von
> ihnen (1) und (2) hergeleitet werden ?

Weder noch, Du sollst Gleichungen (1) und (2) in die Newtonschen Bewegungsgleichungen einsetzen.

>
> Mir fehlt aus dem Skript jegliche Grundlage für die
> geforderte Herleitung. Deshalb kann ich auch mit keinerlei
> Lösungsvorschlag aufwarten.

Bist Du sicher, dass Dir Aufgaben gestellt werden, deren Grundlage zur Lösung nicht behandelt wurde?

Wie gesagt, stelle erstmal die Bewegungsgleichungen auf und setze dann wie in der Aufgabenstellung beschrieben ein.

>  
> Ich hoffe, dass mir jemand helfen kann.
>  
> Gruß Max

Gruß,

notinX

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de