www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Abbildungen" - Kern, Bild bestimmen
Kern, Bild bestimmen < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kern, Bild bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:40 Mo 15.12.2008
Autor: Calcio

Aufgabe
Gegeben seien die Endomorphismen f,g [mm] \IR^{3} \to \IR^{3} [/mm] mit
f(x) = [mm] \pmat{ x1 -x2 \\ x3 \\ x1 - x2 +x3 }, [/mm] g(x) = [mm] \pmat{ x1 -x2 \\ x3 \\ x1 + x2 +x3 }. [/mm]
Bestimmen Sie Kern(f) und Kern(g) sowie Basen für Kern(f) und Bild(g)

Hallo,

ich verstehe die Aufgabe nicht, weshalb ich auch keinen Lösungsansatz posten kann. Wäre nett, wenn ihr mir mit dem Ansatz helfen könntet..



        
Bezug
Kern, Bild bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 14:45 Mo 15.12.2008
Autor: fred97


> Gegeben seien die Endomorphismen f,g [mm]\IR^{3} \to \IR^{3}[/mm]
> mit
>  f(x) = [mm]\pmat{ x1 -x2 \\ x3 \\ x1 - x2 +x3 },[/mm] g(x) = [mm]\pmat{ x1 -x2 \\ x3 \\ x1 + x2 +x3 }.[/mm]
>  
> Bestimmen Sie Kern(f) und Kern(g) sowie Basen für Kern(f)
> und Bild(g)
>  Hallo,
>  
> ich verstehe die Aufgabe nicht, weshalb ich auch keinen
> Lösungsansatz posten kann. Wäre nett, wenn ihr mir mit dem
> Ansatz helfen könntet..
>
>  


Wenn Du die Aufgabe nicht verstehst, weißt Du offensichtlich nicht, was der Kern einer linearen Abbildung ist, und genauso wenig, was eine Basis ist.

Also: mach dich schlau und probier dann die Aufgabe. Wenn Du nicht weiterkommst melde Dich

FRED

Bezug
                
Bezug
Kern, Bild bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:24 Mo 15.12.2008
Autor: Calcio

Ich habe mich schlau gemacht und rausgefunden, dass der Kern(A) := {x [mm] \in K^{n} [/mm] | A*x = 0}

Irgendwie fehlt mir jetzt eine Matrix mit Zahlen. Kann ich hierfür die Koeffizienten der f(x) Matrix oben nehmen? also

[mm] \pmat{ 1 & -1 & 0 \\ 0 & 0 & 1 \\ 1 & -1 + 1 }. [/mm]

Dann diese Matrix mal x = 0 ?

Bezug
                        
Bezug
Kern, Bild bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 15:38 Mo 15.12.2008
Autor: djmatey

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

> Ich habe mich schlau gemacht und rausgefunden, dass der
> Kern(A) := {x [mm]\in K^{n}[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

| A*x = 0}

>  
> Irgendwie fehlt mir jetzt eine Matrix mit Zahlen. Kann ich
> hierfür die Koeffizienten der f(x) Matrix oben nehmen? also
>
> [mm]\pmat{ 1 & -1 & 0 \\ 0 & 0 & 1 \\ 1 & -1 + 1 }.[/mm]

Genau, das entspricht f.

>  
> Dann diese Matrix mal x = 0 ?  

Ja, welche x erfüllen diese Gleichung? Sie bilden den Kern von f.

LG djmatey


Bezug
                                
Bezug
Kern, Bild bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:51 Mo 15.12.2008
Autor: Calcio

Ich steh grad total auf dem Schlauch..

Ich bekomme jetzt raus, dass x1 = x2 ist und x3=0.. was bedeutet das jetzt für meinen Kern?

Bezug
                                        
Bezug
Kern, Bild bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 15:56 Mo 15.12.2008
Autor: djmatey

Genau so ist es; der Kern von f besteht aus den Vektoren, die diese Eigenschaften erfüllen, d.h. von der Form

[mm] \vektor{x_1 \\ x_1 \\ 0} [/mm]

sind.
Anschaulich bildet der Kern somit eine spezielle Gerade, nämlich eine Winkelhalbierende der [mm] x_1-x_2-Ebene. [/mm]

LG djmatey

Bezug
                                                
Bezug
Kern, Bild bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:07 Mo 15.12.2008
Autor: Calcio

Stimmt es, dass der Kern von g(x) = [mm] \vektor{0 \\ 0 \\ 0} [/mm] ist?

Ich bräuchte nun noch die Basis von Kern(f) und Bild(g)

Die Basis für Kern(f) müsste ja so aussehen, dass die ersten beiden Vektoren gleich sind und der dritte Null. Kann ich das einfach so schreiben:

[mm] \{\vektor{x1 \\ x2 \\ x3}\vektor{x1 \\ x2 \\ x3}\vektor{0 \\ 0 \\ 0}\}? [/mm]


Bezug
                                                        
Bezug
Kern, Bild bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:15 Mo 15.12.2008
Autor: fred97


> Stimmt es, dass der Kern von g(x) = [mm]\vektor{0 \\ 0 \\ 0}[/mm]
> ist?


Ja, also kern(g) = { [mm] \vektor{0 \\ 0 \\ 0} [/mm] }


>
> Ich bräuchte nun noch die Basis von Kern(f) und Bild(g)
>  
> Die Basis für Kern(f) müsste ja so aussehen, dass die
> ersten beiden Vektoren gleich sind und der dritte Null.
> Kann ich das einfach so schreiben:
>  
> [mm]\{\vektor{x1 \\ x2 \\ x3}\vektor{x1 \\ x2 \\ x3}\vektor{0 \\ 0 \\ 0}\}?[/mm]
>  




Kompletter Unsinn. Du hast Dich offensichtlich immer noch nicht schlau gemacht, was der Begriff "Basis" bedeutet.

djmatey hat doch schon alles gesagt: Kern(f) = { [mm] \vektor{t \\ t \\ 0}: [/mm] t [mm] \in \IR [/mm] }

Dann ist eine Basis von Kern(f): { [mm] \vektor{1 \\ 1 \\ 0} [/mm] }

FRED

>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de