www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Matrizen" - Kern R3 -> R2
Kern R3 -> R2 < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kern R3 -> R2: Tipp
Status: (Frage) beantwortet Status 
Datum: 17:58 So 23.01.2011
Autor: Totti89

Aufgabe
Die lineare Abbildung f: [mm] \IR^3 \to \IR^2 [/mm] wird für alle Vektoren [mm] \vec{u}=\vektor{x \\ y\\z} \in \IR^3 [/mm] gegeben durch:
[mm] f\vektor{1 \\ 0\\0}=\vektor{5 \\ -10} [/mm] , [mm] f\vektor{0 \\ 1\\0} [/mm] = [mm] \vektor{-3 \\ 6} [/mm] , [mm] f\vektor{0 \\ 0\\1} [/mm] = [mm] \vektor{-1 \\ 2} [/mm]

a)Wie lautet die Matrix von f bezüglich der kanonischen Basen des [mm] \IR^3 [/mm] und des [mm] \IR^2 [/mm]
b)Bestimmen sie den Kern und bestätigen sie die Dimensionsformel

Hallo zusammen, bin mir bei meiner Lösung unsicher, vielleicht kann mir ja jemand eine Rückmeldung geben, wäre super!

zu a) habe ich einfach die Matrix abgelesen:
[mm] \pmat{ 5 & -3 & -1 \\ -10 & 6 & 2 } [/mm]

liege ich da richtig, wenn ich sage, dass das die Matrix der linearen Abbildung ist im [mm] \IR^3 [/mm] bzgl. der kan. Basen ist?

zu b)
[mm] \pmat{ 5 & -3 & -1 \\ -10 & 6 & 2 } [/mm] * [mm] \vektor{x \\ y \\z} [/mm] = [mm] \vektor{0 \\ 0} [/mm]

aber nach Gauß
[mm] \pmat{ 5 & -3 & -1 \\ 0 & 0 & 0 } [/mm] = [mm] \vektor{0 \\ 0} [/mm]
was heißt das jetzt für meinen Kern?
ich kann zwar noch sagen,dass [mm] y=\bruch{5}{3}x-\bruch{1}{3}z [/mm] und z=5x-3y
aber dann habe ich ja denkich noch keine richtige Basis für meinen Kern, der schon mal mit Gleichung 5x -3y -1z=0 beschrieben wird..!?

schon mal vielen Dank für Eure Bemühungen!

        
Bezug
Kern R3 -> R2: Antwort
Status: (Antwort) fertig Status 
Datum: 18:13 So 23.01.2011
Autor: schachuzipus

Hallo Totti89,


> Die lineare Abbildung f: [mm]\IR^3 \to \IR^2[/mm] wird für alle
> Vektoren [mm]\vec{u}=\vektor{x \\ y\\ z} \in \IR^3[/mm] gegeben
> durch:
>  [mm]f\vektor{1 \\ 0\\ 0}=\vektor{5 \\ -10}[/mm] , [mm]f\vektor{0 \\ 1\\ 0}[/mm]
> = [mm]\vektor{-3 \\ 6}[/mm] , [mm]f\vektor{0 \\ 0\\ 1}[/mm] = [mm]\vektor{-1 \\ 2}[/mm]
>  
> a)Wie lautet die Matrix von f bezüglich der kanonischen
> Basen des [mm]\IR^3[/mm] und des [mm]\IR^2[/mm]
>  b)Bestimmen sie den Kern und bestätigen sie die
> Dimensionsformel
>  Hallo zusammen, bin mir bei meiner Lösung unsicher,
> vielleicht kann mir ja jemand eine Rückmeldung geben,
> wäre super!
>
> zu a) habe ich einfach die Matrix abgelesen:
>  [mm]\pmat{ 5 & -3 & -1 \\ -10 & 6 & 2 }[/mm] [ok]
>  
> liege ich da richtig, wenn ich sage, dass das die Matrix
> der linearen Abbildung ist im [mm]\IR^3[/mm] bzgl. der kan. Basen
> ist?

Ja, liegst du ...

>
> zu b)
> [mm]\pmat{ 5 & -3 & -1 \\ -10 & 6 & 2 }[/mm] * [mm]\vektor{x \\ y \\ z}[/mm] =  [mm]\vektor{0 \\ 0}[/mm]
>  
> aber nach Gauß
>  [mm]\pmat{ 5 & -3 & -1 \\ 0 & 0 & 0 }[/mm] = [mm]\vektor{0 \\ 0}[/mm]
>  was
> heißt das jetzt für meinen Kern?

Du hast eine Gleichung in 3 Unbekannten, in Zeile 1 steht ja [mm]5x-3y-z=0[/mm]

Du kannst also [mm]y=s, z=t[/mm] mit [mm]s,t\in\IR[/mm] beliebig wählen.

Damit dann [mm]5x=3y+z=3s+t[/mm], also [mm]x=\frac{3}{5}s+\frac{1}{5}t[/mm]

Ein Vektor [mm]\vektor{x\\ y\\ z}[/mm] aus dem Kern sieht also so aus:

[mm]\vektor{\frac{3}{5}s+\frac{1}{5}t\\ s\\t}[/mm] mit [mm]s,t\in\IR[/mm]

Also [mm]\operatorname{Kern}=\left\{\vektor{\frac{3}{5}s+\frac{1}{5}t\\ s\\t}\mid s,t\in\IR\right\}=\left\{\vektor{\frac{3}{5}s\\ s\\ 0}+\vektor{\frac{1}{5}t\\ 0\\ t}\mid s,t\in\IR\right\}[/mm]

Der Kern ist also 2-dimensional, für etwa [mm]s=t=5[/mm] erhältst du als Basis

[mm]\left\{\vektor{3\\ 5\\ 0},\vektor{1\\ 0\\ 5}\right\}[/mm]

Bestimme nun das Bild (bzw. eine Basis desselben), beachte, dass die Spaltenvektoren das Bild aufspannen.


Überprüfe dann, ob der Dimensionssatz hier gilt ...


> ich kann zwar noch sagen,dass [mm]y=\bruch{5}{3}x-\bruch{1}{3}z[/mm]
> und z=5x-3y
>  aber dann habe ich ja denkich noch keine richtige Basis
> für meinen Kern, der schon mal mit Gleichung 5x -3y -1z=0
> beschrieben wird..!?
>  
> schon mal vielen Dank für Eure Bemühungen!  

Gruß

schachuzipus


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de