www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Skalarprodukte" - Kern einer Bilinearform
Kern einer Bilinearform < Skalarprodukte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Skalarprodukte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kern einer Bilinearform: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 20:05 Mo 30.04.2007
Autor: sirdante

Aufgabe
f: [mm] \IR^4 [/mm] x [mm] \IR^4 \to \IR [/mm]

f(x,y) = [mm] y_{1}x_{2} [/mm] - [mm] x_{1}y_{2} [/mm] + [mm] 2y_{1}x_{4} [/mm] - [mm] 2x_{1}y_{4} [/mm] + [mm] y_{3}x_{2} [/mm] - [mm] x_{3}y_{2} [/mm] + [mm] 3y_{3}x_{4} [/mm] - [mm] 3x_{3}y_{4} [/mm]

Bestimmen Sie ker(f).

Habe gezeigt, dass es symplektische Bilinearform ist und das die Grammatrix bzgl der kanonischen Basis folgendermaßen aussieht:

[mm] \pmat{ 0 & -1 & 0 & -2 \\ 1 & 0 & 1 & 0 \\ 0 & -1 & 0 & -3 \\ 2 & 0 & 3 & 0 } [/mm]

Sieht sehr symplektisch aus, finde ich, also sollte sie richtig sein.

Wie zeige ich denn nun, was ker(f) ist?

Also ker(f) = { [mm] v\not=0 [/mm] : f(v,w) = 0 ,  [mm] \forall [/mm] w }

Ich habe bisher rausgefunden, dass ker(f) [mm] \not= [/mm] {0} , da zB. für:

v = [mm] \vektor{1 \\ 0 \\ 0 \\ 0}, [/mm]  w = [mm] \vektor{0 \\ 2 \\ 0 \\ -1} [/mm] gilt:

f(v,w) = - 2 + 2 = 0.

Aber wie komme ich denn nun auf ker(f) ? Meine Intuition sagt, dass dim(ker (f)) = 2 ist, aber beweisen kann ich das auch nicht...


Ich hatte die Idee mit den kan Basisvektoren als v nacheinander mal die die w's anzuschauen, aber irgendwie komme ich auf keinen grünen Zweig!


Wäre für Tipps sehr dankbar!

Mfg dante

        
Bezug
Kern einer Bilinearform: Antwort
Status: (Antwort) fertig Status 
Datum: 23:34 Mo 30.04.2007
Autor: Event_Horizon

Hallo!

Es ist hier nicht einfach so möglich, einen Kern anzugeben.

Denken wir doch mal bezüglich deines Vektors v weiter:

Wenn jetzt [mm] $w_2=-2w_4$ [/mm] ist, dann ist die erste Komponente nach der Multiplikation mit der Matrix sicherlich 0. Die restlichen Komponenten können beliebige Werte annehmen, und das Produkt der beiden Vektoren wäre immer 0. Das heißt also, 3 freie Parameter! Demnach ist HIER der Kern dreidimensional.

Aber wie sieht es mit einem anderen v aus?

Ein analoges Problem ist ja das Skalarprodukt, das ist auch eine Bilinearform, deren Matrix i.A. die Einheitsmatrix ist. Welchen Kern hat die? Nun, da gibts auch keine einfache Lösung, sondern da lautet die Lösung: Nimm irgendeinen Vektor v. Der Kern besteht dann aus allen Vektoren w, die senkrecht auf diesem speziellen v stehen.

Demnach sollte man die Aufgabe eher umformulieren und nach [mm] $Ker(f_x(y))$ [/mm] fragen, also x als äußeren Parameter betrachten.


Vielleicht übersehe ich grade was, aber so wie ich das grade sehe, kannst du drei Komponenten von y vorgeben und die vierte so bestimmen, daß die Gleichung 0 ergibt - abhängig von den drei anderen Komponenten und allen vier Komponenten von x.
hmmm...

Bezug
                
Bezug
Kern einer Bilinearform: Idee
Status: (Frage) überfällig Status 
Datum: 17:56 Di 01.05.2007
Autor: sirdante

Danke für die schnelle Antwort!!

V = [mm] U_{1} \oplus [/mm] ... [mm] \oplus U_{m} \oplus [/mm] ker(f)

Ich habe duch viel rumgerechne nun zwei Unterräume raus, die Senkrecht zueinander stehen müssten:

U = [mm] L[\vektor{1 \\ 0 \\ 0 \\ 0},\vektor{0 \\ 1 \\ 0 \\ 0}] [/mm]    , [mm] U\perp [/mm] = [mm] L[\vektor{1 \\ 2 \\ -1 \\ -1},\vektor{1 \\ 4 \\ -1 \\ -2}] [/mm]

Habe dafür [mm] f(\vektor{1 \\ 0 \\ 0 \\ 0},a) [/mm] = 0  und [mm] f(\vektor{0 \\ 1 \\ 0 \\ 0},a) [/mm] = 0  ,  a [mm] \in \IR^4 [/mm]  angeschaut und [mm] a_{2} [/mm] = [mm] -2a_{4} [/mm]  und  [mm] a_{1} [/mm] = - [mm] a_{3} [/mm] als Bedingungen herausbekommen und daraus [mm] U\perp [/mm] gebastelt.

Nun die ernüchternde Frage:  Nützt mir das was???  

Ich hatte überlegt 0 [mm] \not= [/mm] ker(f) [mm] \not= [/mm] 4 = dim V  => ker(f) = 2, da ansonsten die obige Gleichung verletzt ist... macht das Sinn?
Ich wäre für Tipps dankbar!

mfg dante

Bezug
                        
Bezug
Kern einer Bilinearform: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:24 Do 03.05.2007
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Skalarprodukte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de