www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra Sonstiges" - Kern eines Einsetzungshomom.
Kern eines Einsetzungshomom. < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kern eines Einsetzungshomom.: siehe 2.Frage
Status: (Frage) beantwortet Status 
Datum: 20:56 Sa 19.06.2010
Autor: carlosfritz

Aufgabe
Sei K Körper, E der Einsetungshomomorphismus von [mm] \IZ \left[ t \right] [/mm]  in K mit [mm] E(t)=0_{K} [/mm]

Was ist KernE ?




Siehe zweite Frage, denn hier habe ich einen großen Fehler gefunden.

Hallo,

Erstmal etwas grundlegendes:
Sei f [mm] \in \IZ\left[ t \right]. [/mm] Dann f sowas wie [mm] c_{0}+c_{1}t+...+c_{n}t^{n} [/mm]
und für jedes x [mm] \in [/mm] K is dann E(f)=:f(x)= [mm] c_{0}+c_{1}x+...+c_{n}x^{n}. [/mm]

Also, der KernE= [mm] \{ f \in \IZ\left[ t \right] : E(f) = 0_{K} \} [/mm] <-- ist das überhaupt richtig?

Sei nun f [mm] \in [/mm] Kern E, dann gilt also für alle [mm] x\in [/mm] K f(x)=0 (<-- ? muss ja eigentlich)

So, was bringt mir nun E(t)= [mm] 0_{K}? [/mm]
Was bedeutet das überhaupt?
Ist das so? [mm] E(t)=:t(x)=a_{0}+a_{1}x+...+a_{n}x^{n}= 0_{K} [/mm] f.a. [mm] x\in [/mm] K.

Aber dann wäre ja [mm] t\in \IZ\left[ t \right] [/mm] und dabei ist doch eigentlich [mm] t\in \IZ [/mm] ?
Also ist [mm] t\in \IZ\left[ t \right] [/mm] eine Konstante und somit t=0 ??

Ich höre hier mal kurz auf und hoffe (naja eigentlich nicht) mir kann jemand sagen, dass ich (wahrscheinlich) komplett falsch liege.

Ich versuche (nocheinmal) aus meinem Skript schlau zu werden.

Danke!


        
Bezug
Kern eines Einsetzungshomom.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:05 So 20.06.2010
Autor: carlosfritz

Aufgabe
Sei K Körper, E der Einsetungshomomorphismus von [mm] \IZ \left[ t \right] [/mm]  in K mit [mm] E(t)=0_{K} [/mm]

Was ist KernE ?

So, nochmal hallo.

Habe nun eine nacht drüber geschlafen und ich denke ich ich weiss nun was das zu bedeuten hat. (zumindest eher als gestern.)

Also der KernE= [mm] \{ f \in \IZ \left[ t \right] : f(x)=0_{K}, x\in K \} [/mm] (Eigentlich müsste doch auch E eher [mm] E_{0_{K}} [/mm] heißen, oder?)

Okay.
Sei f [mm] \in \IZ \left[ t \right]. [/mm] Dann [mm] f=\summe_{i=0}^{n}c_{i}t^{i} \mapsto \summe_{i=0}^{n}c_{i}0_{K}^{i}=c_{0} [/mm] für alle f [mm] \in \IZ \left[ t \right] [/mm]

Soweit richtig?


Bezug
                
Bezug
Kern eines Einsetzungshomom.: Antwort
Status: (Antwort) fertig Status 
Datum: 16:14 So 20.06.2010
Autor: mathfunnel

Hallo carlosfritz,

Deine Formulierung für Kern$(E)$ ist nicht ganz korrekt.
Dein Ausdruck $ [mm] f=\sum_{i=0}^{n}c_{i}t^{i} \mapsto \sum_{i=0}^{n}c_{i}0_{K}^{i}=c_{0} [/mm] $ beschreibt die
Abbildung $E$. ($E$ ist als Einsetzungshomomorphismus durch die Voraussetzung $E(t) = [mm] 0_K$ [/mm] eindeutig bestimmt.) Also ist $E(f) = [mm] c_0\cdot 1_K [/mm] (=: [mm] f(0_K))$ [/mm] und somit Kern (E) = f [mm] \in \mathbb{Z}[/mm] [t]: [mm] \ldots [/mm] .

(Entschuldigung, irgendwie kann ich keine geschweifte Klammer mehr eingeben?)

Gruß mathfunnel


Bezug
                        
Bezug
Kern eines Einsetzungshomom.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:40 So 20.06.2010
Autor: carlosfritz

aha.

also ist Kern(E)= [mm] \{ f \in \IZ \left[ t \right] : c_{0}=0 \} [/mm] ? (ist jetzt natürlich nicht formell geschrieben)

geschweifte klammern macht man mit [mm] "\backslash \{" bzw. "\backslash \}" [/mm]

Bezug
                                
Bezug
Kern eines Einsetzungshomom.: Antwort
Status: (Antwort) fertig Status 
Datum: 16:54 So 20.06.2010
Autor: mathfunnel


> aha.
>  
> also ist Kern(E)= [mm]\{ f \in \IZ \left[ t \right] : c_{0}=0 \}[/mm]
> ? (ist jetzt natürlich nicht formell geschrieben)

Ja, so ist es. Die Polynome haben also alle eine ganz gewisse Nullstelle!
Beachte meine Korrektur: [mm] $c_0 \notin [/mm] K$  aber [mm] $c_0\cdot 1_K \in [/mm] K$.

Gruß mathfunnel  


> geschweifte klammern macht man mit [mm]"\backslash \{" bzw. "\backslash \}"[/mm]
>  

Danke, ich weiß wie man geschweifte Klammern eingibt, aber ich habe eine Fehlermeldung bekommen, die ich nur durch entfernen der Klammern umgehen konnte.
[mm] $\{\}$ [/mm] Ok, jetzt geht es wieder. Ich denke das lag irgendwie an meinem Gesamttext.


Bezug
                                        
Bezug
Kern eines Einsetzungshomom.: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:08 So 20.06.2010
Autor: carlosfritz

jo, danke

stimmt. mit dem 1_[K] hast du natürlich Recht. vergisst man ein wenig, wenn man sich die letzte Zeit nur mit Endomorphismen rumgeprügelt hat :)

btw.: magst du noch die erste Frage kurz beantworten, damit das Thema beantwortet ist?

Bezug
        
Bezug
Kern eines Einsetzungshomom.: Antwort
Status: (Antwort) fertig Status 
Datum: 17:12 So 20.06.2010
Autor: mathfunnel

Antwort siehe unten!

Gruß mathfunnel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de