www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionalanalysis" - Kern eines Funktionales
Kern eines Funktionales < Funktionalanalysis < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kern eines Funktionales: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 11:38 So 25.05.2008
Autor: verkackt

Aufgabe
Sei X ein Vektorraum über einem Körper [mm] \IK [/mm] . Sei [mm] H_f [/mm] = { [mm] {u\in X| f(u)=0} [/mm] } der Kern von f.Zeigen Sie, dass f das Funktional f bis auf einem konstanten Faktor definiert.D.h. : [mm] H_f =H_g \gdw \exist [/mm] c [mm] \in \IK [/mm] mit f=cg

Hi,
Die Rückrichtung des Beweises hab ich schon hingekriegt. Für die Hinrichtung bruach ich eure Hilfe.
Es wäre super, wenn einer mir ein tipp geben könnte.
Danke im Voraus.Lg. V.

        
Bezug
Kern eines Funktionales: Antwort (nicht fertig)
Status: (Antwort) noch nicht fertig Status 
Datum: 10:06 Di 27.05.2008
Autor: MatthiasKr

EDIT: diese antwort scheint nicht ganz korrekt zu sein, deshalb beachte sie bis auf weiteres nicht...

Matthias


allo,

> Sei X ein Vektorraum über einem Körper [mm]\IK[/mm] . Sei [mm]H_f[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

= {

> [mm]{u\in X| f(u)=0}[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

} der Kern von f.Zeigen Sie, dass f das

> Funktional f bis auf einem konstanten Faktor definiert.D.h.
> : [mm]H_f =H_g \gdw \exist[/mm] c [mm]\in \IK[/mm] mit f=cg
>  Hi,
> Die Rückrichtung des Beweises hab ich schon hingekriegt.
> Für die Hinrichtung bruach ich eure Hilfe.
>  Es wäre super, wenn einer mir ein tipp geben könnte.
>  Danke im Voraus.Lg. V.

kannst du bitte nochmal checken, ob die aufgabe wirklich genau so gestellt wurde und du keine zusaetzlichen voraussetzungen weggelassen hast?
In dieser form stimmt die aussage meiner meinung nach naemlich nicht...

angenommen, X ist n-dim. mit basis [mm] b_1,...,b_n. [/mm] Der Dualraum [mm] X^{\*} [/mm] ist dann auch n-dim. mit der dualen basis [mm] $b_1',\ldots,b_n'$. [/mm] nimm als beispiel weiter an, dass [mm] H_f [/mm] von [mm] b_1 [/mm] und [mm] b_2 [/mm] aufgespannt wird. daraus folgt dann, das f eine linearkombination der dualbasisvektoren [mm] $b_3',\ldots,b_n'$ [/mm] ist, es also noch $n-2$ freiheitsgrade gibt. Mit anderen worten, der raum der funktionale mit einem bestimmten k-dimensionalem kern hat die dimension $n-k$.
In der aufgabe wird behauptet, dieser raum hat dimension 1. Das kann ich nicht nachvollziehen...

gruss
matthias


Bezug
                
Bezug
Kern eines Funktionales: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:20 Di 27.05.2008
Autor: fred97

Der Kern eines Funktionals ungleich 0 hat immer die Kodimension 1 !!

Gruß FRED

Bezug
                        
Bezug
Kern eines Funktionales: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 03:21 Mi 28.05.2008
Autor: MatthiasKr

huch, ja, du hast natuerlich recht...

gruss
matthias

Bezug
        
Bezug
Kern eines Funktionales: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 03:20 Mi 28.05.2008
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de