www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Kern, lineare Abbildung
Kern, lineare Abbildung < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kern, lineare Abbildung: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 09:39 Fr 26.11.2004
Autor: nix-blicker

Sei T:V [mm] \to [/mm] K linear. Sei u [mm] \in [/mm] V, u [mm] \not\in [/mm] ker(T).
Zeige:
V = ker(T) [mm] \oplus [/mm] Ku

Ich weiß dass ker(T)= [mm] \{v\in V:T(v)=0 \} [/mm] ist. Aber damit kann ich leider garnichts anfangen. K wird wohl irgendeine Menge sein oder was ist K?
Bitte helfe mir diese Behauptung zu beweisen und zwar sowhl in die eine, als auch in die andere Richtung.Danke!

        
Bezug
Kern, lineare Abbildung: Antwort
Status: (Antwort) fertig Status 
Datum: 11:46 Fr 26.11.2004
Autor: Julius

Hallo!

Es sei $n:= [mm] \dim(V)$. [/mm] $V$ ist ein $K$-Vektorraum und $K$ dabei ein Körper. Hier wird $K$ als Vektorraum über sich selbst aufgefasst und $T$ ist eine lineare Abbildung vom $K$-Vektorraum $V$ in den $K$-Vektorraum $K$.

Ich ergänze $u [mm] \notin [/mm] Kern(T)$ zu einer Basis

[mm] $\{u,v_2,\ldots,v_n\}$ [/mm]

von $V$.

Aus der Dimensionsformel

[mm] $\dim(Kern(T)) [/mm] = n - [mm] \dim(Bild(T)) [/mm] = n-1$

(beachte bitte [mm] $\dim(Bild(T)) [/mm] = 1$ wegen [mm] $\emptyset \ne [/mm] Bild(T) [mm] \subset [/mm] K$ und [mm] $\dim(K)=1$) [/mm]

folgt sofort:

[mm] $v_i \in [/mm] Kern(T)$  für  [mm] $i=2,3,\ldots,n$ [/mm]

und daraus dann die Behauptung.

Viele Grüße
Julius

Bezug
                
Bezug
Kern, lineare Abbildung: Frage
Status: (Frage) beantwortet Status 
Datum: 20:39 Fr 26.11.2004
Autor: nix-blicker

Wie kommt man daruaf, dass das dim(Bild(T))=1 und dim(Kern(T))=1 ??

Bezug
                        
Bezug
Kern, lineare Abbildung: Antwort
Status: (Antwort) fertig Status 
Datum: 20:50 Fr 26.11.2004
Autor: Julius

Hallo!

> Wie kommt man daruaf, dass das dim(Bild(T))=1 und
> dim(Kern(T))=1 ??

Letzteres ist falsch und wurde von mir auch nicht behauptet.

Ersteres sieht man so ein:

$Bild(T)$ ist ein Untervektorraum von $K$.

Es gilt: [mm] $\dim_K(K)=1$, [/mm] denn [mm] $\{1\}$ [/mm] ist eine Basis von [mm] $\IK$ [/mm] (allgemein gilt: [mm] $\dim_K(K^n)=n$. [/mm]

(Stell dir $K$ als Gerade vor.)

Nun gilt für jeden Untervektorraum $U$ eines Vektorraums $V$:

[mm] $\dim_K(U) \le \dim_K(V)$, [/mm]

also:

[mm] $\dim_K(Bild(T)) \le \dim_K(K)=1$, [/mm]

also:

[mm] $\dim_K(Bild(T)) [/mm] = 0$   oder   [mm] $\dim_K(Bild(T))=1$, [/mm]

Die Aussage [mm] $dim_K(Bild(T))=0$ [/mm] würde aber [mm] $Bild(T)=\{0\}$ [/mm] bedeuten, und damit:

$T [mm] \equiv [/mm] 0$  (d.h. $T$ wäre die identische Nullabbildung).

Das kann aber nicht sein, weil es nach Voraussetzung einen Vektor gibt, der nicht im Kern von $T$ liegt. Also muss

[mm] $\dim_K(Bild(T)) [/mm] =1$

wahr sein, und damit:

[mm] $\dim_K(Kern(T)) [/mm] = n - [mm] \dim(Bild(T)) [/mm] = n-1$.

Viele Grüße
Julius


Bezug
                                
Bezug
Kern, lineare Abbildung: Danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:13 Sa 27.11.2004
Autor: nix-blicker

danke für's geduldige erklären. hab's jetzt verstanden.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de