www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Abbildungen" - Kern richtig bestimmen..
Kern richtig bestimmen.. < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kern richtig bestimmen..: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:57 Di 25.03.2014
Autor: Kartoffelchen

Aufgabe
Zu gegebenen linearen Abbildungen zu Polynomen (Standardbasis = (1, x, [mm] x^2, x^3)) [/mm] sind zwei Matrizen sind gegeben bzw. wurden sie berechnet und lauten:

$A = (2, 0, [mm] \frac{2}{3}, [/mm] 0)$ (bzgl. einer linearen Abbildung f)
$B =  [mm] \begin{pmatrix} 1 & -1 & 1 & -1 \\1 & 0 & 0 & 0 \\1 & 1 & 1 & 1 \end{pmatrix}$ [/mm] (bzgl. einer linearen Abbildung g)

Zu berechnen ist nun der Kern der Matrizen, um dann zu zeigen, dass
der Kern von B eine echte Teilmenge des Kerns von A ist.


1.) Zum Kern einer zur Matrix B gehörenden linearen Abbildung gilt definitionsgemäß für alle $v [mm] \in [/mm] ker$ [mm] $F_B [/mm] (k) = 0$. Da diese lineare Abbildung nun durch Matrix B eindeutig bestimmt ist löse ich ein homogenes LGS, also die Matrix:

$(B|0) = ... = [mm] \begin{pmatrix} 1 & 0 & 0 & 0 & 0\\ 0 & 1 & 0 & 1 & 0\\ 0 & 0 & 1 & 0 & 0\end{pmatrix}$, [/mm] d.h. es ist  $ker(g) = [mm] span\{x - x^3\}$ [/mm] (Dimension 1?)

Da nun auch $A [mm] \cdot [/mm] (0, x, 0, [mm] -x^3) [/mm] = 0 $ ist der Kern von g zumindest im Kern von f enthalten! Nun möchte ich den Kern von f bestimmen, um dann zeigen zu können, dass er mindestens Dimension 2 besitzt.

Wenn ich nun $ (A|0) = (2, 0 , [mm] \frac{2}{3}, [/mm] 0, 0)$  lösen möchte.. naja dann ist doch $ [mm] x^2 [/mm] = -3 $ und damit $ker(f) = [mm] span\{-3, 0, 1, 0\}$ [/mm] ?! Irgendwas passt da nicht.

        
Bezug
Kern richtig bestimmen..: Antwort
Status: (Antwort) fertig Status 
Datum: 20:08 Di 25.03.2014
Autor: MathePower

Hallo Kartoffelchen,

> Zu gegebenen linearen Abbildungen zu Polynomen
> (Standardbasis = (1, x, [mm]x^2, x^3))[/mm] sind zwei Matrizen sind
> gegeben bzw. wurden sie berechnet und lauten:
>  
> [mm]A = (2, 0, \frac{2}{3}, 0)[/mm] (bzgl. einer linearen Abbildung
> f)
>  [mm]B = \begin{pmatrix} 1 & -1 & 1 & -1 \\1 & 0 & 0 & 0 \\1 & 1 & 1 & 1 \end{pmatrix}[/mm]
> (bzgl. einer linearen Abbildung g)
>  
> Zu berechnen ist nun der Kern der Matrizen, um dann zu
> zeigen, dass
>  der Kern von B eine echte Teilmenge des Kerns von A ist.
>  
> 1.) Zum Kern einer zur Matrix B gehörenden linearen
> Abbildung gilt definitionsgemäß für alle [mm]v \in ker[/mm] [mm]F_B (k) = 0[/mm].
> Da diese lineare Abbildung nun durch Matrix B eindeutig
> bestimmt ist löse ich ein homogenes LGS, also die Matrix:
>  
> [mm](B|0) = ... = \begin{pmatrix} 1 & 0 & 0 & 0 & 0\\ 0 & 1 & 0 & 1 & 0\\ 0 & 0 & 1 & 0 & 0\end{pmatrix}[/mm],
> d.h. es ist  [mm]ker(g) = span\{x - x^3\}[/mm] (Dimension 1?)
>  
> Da nun auch [mm]A \cdot (0, x, 0, -x^3) = 0[/mm] ist der Kern von g
> zumindest im Kern von f enthalten! Nun möchte ich den Kern
> von f bestimmen, um dann zeigen zu können, dass er
> mindestens Dimension 2 besitzt.
>  
> Wenn ich nun [mm](A|0) = (2, 0 , \frac{2}{3}, 0, 0)[/mm]  lösen
> möchte.. naja dann ist doch [mm]x^2 = -3[/mm] und damit [mm]ker(f) = span\{-3, 0, 1, 0\}[/mm]
> ?! Irgendwas passt da nicht.


Wenn [mm]p=\pmat{p_{0} \\ p_{1} \\ p_{2} \\ p_{3}}[/mm] ist,
wobei [mm]p_{i}[/mm] der Koeffizient vor [mm]x^{i}, \ i=0,1,2,3[/mm] bedeutet,
dann muss die Gleichung

[mm]2*p_{0}+0*p_{1}+\bruch{2}{3}*p_{2}+0*p_{3}=0[/mm] erfüllt sein.

Bestimme nun die Lösungsmenge dieser Gleichung.


Gruss
MathePower

Bezug
        
Bezug
Kern richtig bestimmen..: Antwort
Status: (Antwort) fertig Status 
Datum: 09:38 Mi 26.03.2014
Autor: fred97

Zu dim(ker(f)):

Ist V:= Menge aller Polynome mit Grad [mm] \le [/mm] 3, so ist doch f eine Linearform auf V. Da f [mm] \ne [/mm] 0, haben wir

   dim(Bild(f))=1.

Wegen

  4 = dim(V)= dim (ker(f))+dim(Bild(f))

folgt:  dim (ker(f))=3.

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de