www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Abbildungen" - Kern und Bild
Kern und Bild < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kern und Bild: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:18 Mi 16.02.2011
Autor: diddy449

Aufgabe
Sei F:V-->W eine lin Abb und V,W x-beliebige Vektorräume
Wie bestimmt man Kern und Bild von F

Meine Idee,
wäre erstmal eine Basis aus V durch F zu jagen und dann zu schauen ob ihre Elemente noch lin unab sind.
Sind sie es, so kann ich ja die Bilder dieser Basis als Basis für Bild F nehemen.
Sind die Bilder lin ab. so würde ich die Darstellungsmatrix bzgl. der gewählten Basen bestimmen, Lös(Darstellunsmatrix,0)bestimmen, die aus Lös erhaltenen vektroren als Koeffizienten für die Basis des Definitonsbereichs auffassen und dessen ergebnis als Basis von Kern F nehmen.
Und für die Basis für Bild f würde ich den die Darstellungsmatrix transponieren und dann ihre lin unab zeilen als Koeffizienten für eine Lk mit der Basis des Bildbereichs auffassen und dessen ergebnis würde ich als Basis für Bild F nehmen.

1. Ist das richtig so?
2. geht das auch leichter?





        
Bezug
Kern und Bild: Antwort
Status: (Antwort) fertig Status 
Datum: 21:03 Mi 16.02.2011
Autor: wieschoo


> Sei F:V-->W eine lin Abb und V,W x-beliebige Vektorräume
>  Wie bestimmt man Kern und Bild von F

>  Meine Idee,
>  wäre erstmal eine Basis aus V durch F zu jagen und dann
> zu schauen ob ihre Elemente noch lin unab sind.
> Sind sie es, so kann ich ja die Bilder dieser Basis als
> Basis für Bild F nehemen.
>  Sind die Bilder lin ab. so würde ich die
> Darstellungsmatrix bzgl. der gewählten Basen bestimmen,
> Lös(Darstellunsmatrix,0)bestimmen, die aus Lös erhaltenen
> vektroren als Koeffizienten für die Basis des
> Definitonsbereichs auffassen und dessen ergebnis als Basis
> von Kern F nehmen.
> Und für die Basis für Bild f würde ich den die
> Darstellungsmatrix transponieren und dann ihre lin unab
> zeilen als Koeffizienten für eine Lk mit der Basis des
> Bildbereichs auffassen und dessen ergebnis würde ich als
> Basis für Bild F nehmen.
>  
> 1. Ist das richtig so?
>  2. geht das auch leichter?

Oh ja. Meine ich zumindestens. Kann natürlich sein, dass du das auch meinst.
F ist eine lineare Abbildung. Wenn dim V= n & dim W =m, dann ist [mm] $A_f\in \IR{m\times n}$ [/mm]
Dann kann wie üblich den Kern einer Matrix bestimmen.
[mm] $Ker(A)=\{x\in \IR^{n} \; |\; Ax=0 \}$ [/mm] (Lös. hom. LGS)
Bild sind die restlichen Spalten der Matrix. Natürlich kann man theoretisch viel herumrechnen. Jedoch würde ich immer einen Lösungsweg bevorzugen, der immer geht.

C.F. Gauß: "Das (..) Verfahren lässt sich halb im Schlaf ausführen oder man kann während derselben an andere Dinge denken."


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de