www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - Kernspaltung
Kernspaltung < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kernspaltung: Tipp
Status: (Frage) beantwortet Status 
Datum: 17:34 Mi 11.11.2009
Autor: mb588

Aufgabe
Ein Neutron fliegt durch eine Masse an Uran und spaltet dbei eine zufällige Anzahl an Atomkernen, wodurch neue herumfliegende Neutronen entstehen. Die Anzahl der Neutronen der n-ten Generation, d.h. Neutronen, die durch Spaltungen freigesetzt werden, welche von neutronen der (n-1)-ten. Generationen ausgelöst wurden, werde mit [mm] X_{n} [/mm] bezeichnet. Dann gilt die Rekursionsformel

[mm] X_{n+1}=\summe_{j=1}^{X_{n}} U_{j,n}, [/mm]

wobei [mm] U_{j,n} [/mm] die Anzahl der Neutronen bezeichnet, welche durch Spaltungen frei werden, die das j-te Neutron der n-ten Generation auslöst. Man kann davon ausgehen, dass [mm] U_{1,n},U_{2,n},...U_{n,n},X_{n} [/mm] unabhängige Zufallsvariablen sind; weiter seien die [mm] U_{j,n} [/mm] identisch verteilt für alle j=1,...n
und alle [mm] n\in\IN. [/mm] Es sei [mm] \my=EU_{1,n} [/mm] und [mm] \lambda=EX_{1}. [/mm] Ermitteln Sie zunächste den bedingten Erwartungswert von [mm] X_{n+1} [/mm] gegeben [mm] X_{n} [/mm] und dann den (unbedingten) Erwartungswert von [mm] X_{n+1}. [/mm]

Huhu.
Hui...also bei der Aufagbe steh ich total auf den Schlauch ich weiß garnicht wie ich anfangen soll. Kann mir einer vllt helfen? Wäre cool danke im voraus!

        
Bezug
Kernspaltung: Antwort
Status: (Antwort) fertig Status 
Datum: 09:47 Do 12.11.2009
Autor: vivo

Hallo,

der bedingte Erwartungswert ist ja einfach, beim unbedingten ist es denke ich am einfachsten über die erzeugende funktion zu gehen.

schau mal in der literatur nach galton watson prozess da findest du wie dass geht.

gruß

Bezug
        
Bezug
Kernspaltung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:20 Mi 18.11.2009
Autor: piccolo1986

Hey, also die Aufgabenstellung sei mal die gleiche.

Es gilt ja für die Erwartungswert:
[mm] E(X_{n+1}|X_{n})=X_{n}*\mu [/mm]
[mm] E(X_{n+1})=\mu^{n}*\lambda [/mm]

Wenn nun die Zufallsvariablen auch 0 annehmen können (Neutron verlässt (Uran-)Masse), dann müsste ja die Kettenreaktion abbrechen können, bzw. sie müsste ja fast sicher abbrechen für [mm] \mu<1 [/mm]

Wie kann ich das jetzt beweisen, dass die Kettenreaktion abbricht für [mm] \mu<1?? [/mm]

Man könnte doch beispielsweise zeigen, dass die Folge [mm] (\summe_{n=1}^{m}X_{n})_{m\in\IN} [/mm] beschränkt ist oder??

Wie kann ich das zeigen??

mfg piccolo

Bezug
                
Bezug
Kernspaltung: Antwort
Status: (Antwort) fertig Status 
Datum: 09:26 Do 19.11.2009
Autor: vivo

Hallo,

schau mal []hier, da steht alles drinn.

gruß

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de