www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionen" - Kettenlinie cosh
Kettenlinie cosh < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kettenlinie cosh: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 16:01 Mi 16.12.2009
Autor: Pompeius

Aufgabe
Herleitung der Kettenlinie ..

Hallo zusammen !

Wir haben die Aufgabe die Kettenlinie formelmäßig herzuleiten und größtenteils haben wir das auch schon ..

Die allgemeine Funktion ist f(x) = [mm] a*cosh(\bruch{x-b}{a}) [/mm] + C ..

Es geht eher um den Spezialfall das die beiden Aufhängepunkte (an denen die Kette hängt) eine unterschiedliche Höhe besitzen ..

bzw wie verändern sich die Parameter der Funktion, wenn ein Aufhängepunkt "hochgezogen" wird, der andere jedoch z.b fest bleibt ?

Die Kräfte der Kette verlaufen ja tangential an der Kette, also kann das sein das man da was mit Evolventen machen muss ??

vielleicht hat ja jemand ein paar tipps diesbezüglich ! :)



        
Bezug
Kettenlinie cosh: Antwort
Status: (Antwort) fertig Status 
Datum: 16:39 Mi 16.12.2009
Autor: leduart

Hallo
wie habt ihr es denn für einfache Aufhängpunkte gemacht?
Gruss leduart

Bezug
                
Bezug
Kettenlinie cosh: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:29 Mi 16.12.2009
Autor: Pompeius

hallo,
also ausgehend von f(x) = [mm] a*cosh(\bruch{x-b}{a})+C [/mm] .. ist es ja so, dass wenn die "aufhängepunkte" auf gleicher höhe sind und die funktion symmetrisch zur y-achse steht, dass b den wert 0 annimmt ..
b gibt also die verschiebung der funktion an in diesem fall ..
a steht für die öffnung der kettenlinie, also für den krümmungskreisradius im Tiefpunkt .. und gibt auch die höhe des tiefpunktes über der x-achse an, wenn c=0 .. ansonsten wär dies durch a+c beschrieben ..
meine frage also konkreter: wenn ich einen aufhängepunkt "hochziehe" um dy, dann hätte das doch auswirkungen auf die parameter a und b vor allem ..
aber in welcher weise ??
lg

Bezug
                        
Bezug
Kettenlinie cosh: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:50 Do 17.12.2009
Autor: pi-roland

Hallo,

diese Formel f(x) = [mm]a*cosh(\bruch{x-b}{a})+C[/mm] musst du doch aber irgendwie hergeleitet haben, oder nicht? So weit ich mich erinnere, kommt die aus einer Differentialgleichung, die gelöst und zusammengefasst zu einem [mm] \cosh [/mm] wird.
Wenn du diese Herleitung diesmal für unterschiedliche Aufhängungspunkte machst, kommst du auch zu deiner allgemeinen Form.
Viel Erfolg,

Roland.


Bezug
                        
Bezug
Kettenlinie cosh: Antwort
Status: (Antwort) fertig Status 
Datum: 17:27 Do 17.12.2009
Autor: leduart

Hallo
geh auf wiki Kettenlinie, dann zum ersten link dort, gute applets und Erklärung.
Du kannst deinen Stützpunkt einfach auf der kettenlinie verschieben.
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de