www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differenzialrechnung" - Kettenregel
Kettenregel < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kettenregel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:15 Do 08.11.2007
Autor: espritgirl

Hallo,

bei uns wurde heute die Kettenregel eingeführt und ich wollte einfach mal ein paar Aufgaben überprüfen lassen:

f(x)=sin(-x)
f`(x)=cos(-x)

f(x)=28*cos(2x+5)
f`(x)=2*(8*(-sin(2x+5)))

[mm] f(x)=9*sinx^{2.5} [/mm]
=> was macht man hier?

[mm] f(x)=(cosx)^{2.5} [/mm]
=> was machst man hier?


Liebe Grüße,

Sarah :-)

        
Bezug
Kettenregel: Antwort
Status: (Antwort) fertig Status 
Datum: 19:41 Do 08.11.2007
Autor: Teufel

Hi!

f(x)=u(v(x))
f'(x)=u'(v(x))*v'(x)

f(x)=sin(-x)

u(v(x))=sin(-x)
v(x)=-x

u'(v(x))=cos(-x)
v'(x)=-1

f'(x)=-cos(-x)

Oder da gilt cos(x)=cos(-x), kannst du auch f'(x)=-cos(x) draus machen, ist aber nicht nötig!

Das 2. müsste f'(x)=28*(-sin(2x+5))*2=-56sin(2x+5) heißen.


3)
Geht ja eigentlich fast wie die davor!
Äußere Funktion abgeleitet ist [mm] cosx^{2,5}, [/mm] innere Funktion abgeleitet ist [mm] (x^{2,5})'=2,5x^{1,5} [/mm]

=> [mm] f'(x)=9*cosx^{2,5}*2,5x^{1,5} [/mm]

4)
Hier ist [mm] x^{2,5} [/mm] sie äußere Funktion und cosx die Innere!


Wenn du noch ein paar Aufgaben dazu machst, kannst du es sicher bald :)

Bezug
                
Bezug
Kettenregel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:47 Do 08.11.2007
Autor: espritgirl

Hallo Teufel,

Danke für deine Korrektur, leider habe ich mich dreimal verschrieben *grr*

d) f(x)=8*cos(2x+5)
  f`(x)=2*(8*(-sin(2x+5)))

[mm] f(x)=9*sinx^{2} [/mm]
---> woher weiß ich bei so einer Aufgabe, was innere und äußere Funktion ist? Ich habe das in der Schule nicht verstanden. Es wurde nur gesagt, was man als erstes in den TR tippt sei die innere.


[mm] f(x)=\wurzel{-x} [/mm]
[mm] f`(x)=\bruch{1}{2*\wurzel{-x}} [/mm]


[mm] f(x)=\wurzel{x^{2}+1} [/mm]
[mm] f`(x)=\bruch{2x}{2*\wurzel{x^{2}+1}} [/mm]

[mm] f(x)=(cosx)^{2} [/mm]
f`(x)=sinx*2*cosx


Aufgefallen ist mir, dass du eine andere Schreibweise hast, als wir.

Wir haben die innere Fkt = z gesetzt und dann anschließend die innere mal die äußere Funktion gerechnet.



Sarah

Bezug
                        
Bezug
Kettenregel: Antwort
Status: (Antwort) fertig Status 
Datum: 21:09 Do 08.11.2007
Autor: Steffi21

Hallo,

1. Ableitung korrekt, du könntst noch schreiben -16sin(2x+5)
2. Ableitung korrekt
3. Ableitung korrekt
4. Ableitung, dir fehlt das Vorzeichen -, die Ableitung von cos(x) ist -sin(x)

cos(2x+5) möchtest du diesen Term berechnen, zuerst 2x+5, davon dann den Cosinus,

[mm] \wurzel{x^{2}+1} [/mm] möchtest du diesen Term berechne, zuerst [mm] x^{2}+1, [/mm] davon dann die Wurzel

[mm] sin(x^{2}) [/mm] möchtest du diesen Term berechnen, zuerst [mm] x^{2}, [/mm] davon dann den Sinus

die Bezeichnungen der Funktionen ist eigentlich egal, ob du sie u und v nennst ober a und b ist eigentlich egal, benutze deine in der Schule eingeführte Bezeichnung,

allgemein hast du es ja schon gesagt, Ableitung innere Funktion mal Ableitung äußere Funktion, ebenso kannst du sagen, Ableitung äußere Funktion mal Ableitung innere Funktion, die Multiplikation ist kommutativ,

Steffi




Bezug
        
Bezug
Kettenregel: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:48 Do 08.11.2007
Autor: jan_lde

Hallo!

Teufel hat recht, ich wollte dir nur noch einen Tipp geben:

Immer aufschreiben was u(x) und was v(x) ist und dann einfach  einsetzen. Das macht die ganze Sache sehr übersichtlich und mit etwas Übung kann man das irgendwann weglassen.

Grüße

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de