www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differenzialrechnung" - Kettenregel
Kettenregel < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kettenregel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:47 So 23.03.2008
Autor: puldi

Ich habe hier zwei Aufgaben und bin mir nicht sicher, ob ich blind bin, aber die scheinen mir so ziemlich gleich zu sein:

a) f(x) = 1 - [mm] (cos(x))^5 [/mm]

b) f(x) = 1 - [mm] (sin(x))^3 [/mm]

Meine Lösungsidee:

a) [mm] -5*(cos(x)^4) [/mm] * (-sin(x))

b) -3*sin(x))² * (cos(x))

Stimmt das?

wenn nein wie wärs richtig? Danke!



        
Bezug
Kettenregel: Antwort
Status: (Antwort) fertig Status 
Datum: 21:54 So 23.03.2008
Autor: steppenhahn

Alles richtig berechnet :-)
Es ist für

[mm]f_{1}(x) = 1 - \cos(x)^{5}[/mm]

die Ableitung

[mm]f_{1}'(x) = 5*\cos(x)^{4}*\sin(x)[/mm]

und für

[mm]f_{2}(x) = 1 - \sin(x)^{3}[/mm]

die Ableitung

[mm]f_{2}'(x) = -3*\sin(x)^{2}*\cos(x)[/mm].

Und: Ja, die Aufgaben sind wirklich ziemlich gleich :-)



Bezug
                
Bezug
Kettenregel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:01 So 23.03.2008
Autor: puldi

ich hab mich nur gefragt, weil da steht ja -cos bzw -sin und trotzdem muss ich die innere ableitung von cos bzw. sinus bilden?

Danke für deine Hilfe, aber ich bin mir i-wie noch ein bisschen unsicher, deshalb hab ich lieber nochmal nachgefragt...

obwohl mir das so wie du umd auch ich das gemacht habe ziemlich sinnvoll erscheint, nur nochmal zur sicherheut..

Bezug
                        
Bezug
Kettenregel: Antwort
Status: (Antwort) fertig Status 
Datum: 22:25 So 23.03.2008
Autor: ebarni

Hallo puldi,

die Antwort von steppenhahn war völlig korrekt.

Bei $ [mm] f_{1}(x) [/mm] = 1 - [mm] \cos(x)^{5} [/mm] $ kannst Du ja zerlegen in die 1 und die [mm] -\cos(x)^{5} [/mm]

Die 1 nach x abgeleitet gibt Null (verschwindet also) und die [mm] -\cos(x)^{5} [/mm] musst Du nach der MBKettenregel ableiten, ergibt also:

$ [mm] f_{1}'(x) [/mm] = [mm] -5\cdot{}\cos(x)^{4}\cdot{}-\sin(x) [/mm] =  [mm] 5\cdot{}\cos(x)^{4}\cdot{}\sin(x)$ [/mm]

Entsprechend die andere Aufgabe.

Viele Grüße, Andreas

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de