www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - Kettenregel
Kettenregel < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kettenregel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:09 Do 07.04.2011
Autor: kushkush

Aufgabe
Berechnen Sie das Differential der Funktion [mm] $f\circ [/mm] g$, wobei

[mm] $f:\IR^{2}\rightarrow \IR^{3}, [/mm] ~ [mm] f(u,v)=(u^{2}+uv, e^{uv},arctan(uv))$ [/mm] und

[mm] $g:\IR^{3}\rightarrow \IR^{2}, [/mm] ~ [mm] g(x,y,z)=(x^{2}+y,z^{2}-xy). [/mm]

Hallo,

Die Kettenregel  lautet: [mm] f'(g())\cdot [/mm] g'()

Nach welcher Variable differenziert man?
Oder muss man hier das totale differential bilden?

Das sieht dann so aus:

[mm] $df(u,v)=(3u+v,(v+u)e^{uv}, (v+u)\frac{1}{1+u^{2}v^{2}})$ [/mm]

$df(x,y,z)= (2x+1, -y-x+2z)$

also wäre das Differential: [mm] $df((u,v)((x^{2}+y,z^{2}-xy)))df(x,y,z)$ [/mm]


Ich habe diese Frage in keinem anderen Forum gestellt

Danke und Gruss
kushkush

        
Bezug
Kettenregel: Antwort
Status: (Antwort) fertig Status 
Datum: 21:45 Do 07.04.2011
Autor: MathePower

Hallo kushkush,



> Berechnen Sie das Differential der Funktion [mm]f\circ g[/mm], wobei
>
> [mm]f:\IR^{2}\rightarrow \IR^{3}, ~ f(u,v)=(u^{2}+uv, e^{uv},arctan(uv))[/mm]
> und
>
> [mm]$g:\IR^{3}\rightarrow \IR^{2},[/mm] ~
> [mm]g(x,y,z)=(x^{2}+y,z^{2}-xy).[/mm]
>  Hallo,
>  
> Die Kettenregel  lautet: [mm]f'(g())\cdot[/mm] g'()
>  
> Nach welcher Variable differenziert man?
>  Oder muss man hier das totale differential bilden?


Ich denk schon, daß hier das totale Differential gebildet werden muss,
da es sich um mehrdimensionale Funktionen handelt.


>  
> Das sieht dann so aus:
>
> [mm]df(u,v)=(3u+v,(v+u)e^{uv}, (v+u)\frac{1}{1+u^{2}v^{2}})[/mm]
>  
> [mm]df(x,y,z)= (2x+1, -y-x+2z)[/mm]
>  
> also wäre das Differential:
> [mm]df((u,v)((x^{2}+y,z^{2}-xy)))df(x,y,z)[/mm]
>  


Schau mal hier: []Totales Differential


>
> Ich habe diese Frage in keinem anderen Forum gestellt
>
> Danke und Gruss
>  kushkush


Gruss
MathePower

Bezug
                
Bezug
Kettenregel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:16 Do 07.04.2011
Autor: kushkush

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Hallo Mathepower,



> total

$\frac{df}{du}f(u,v)= (2u+v,ve^{uv},v\frac{1}{1+u^{2}v^{2}})

$\frac{df}{dv}f(u,v)=(u,ue^{uv},u\frac{1}{1+u^{2}v^{2}})$

totales Differential ist also: $df f(u,v)=(3u+v,(u+v)e^{uv},(u+v)\frac{1}{1+u^{2}v^{2}})$

$\frac{dg}{dx}g(x,y,z)=(2x,-y)$

$\frac{dg}{dy}g(x,y,z)=(1,-x)$

$\frac{dg}{dz}g(x,y,z)=(0,2z)$

totales Differential ist: $dg g(x,y,z)=(2x+1,2z-x-y)$


Also habe ich: $\IR^{2}\rightarrow \IR^{2}$


$df(g(x,y,z))\cdot dgg(x,y,z)= (3(x^{2}+y)+(z^{2}-xy), ((x^{2}+y)+(z^{2}-xy))(e^{(x^{2}+y)(z^{2}-xy}},((x^{2}+y)+(z^{2}-xy))(\frac{1}{1+(x^{2}+y)^{2}(z^{2}-xy)^{2}) }))(2x+1,2z-x-y)$


Stimmt das so?



> Gruss

Danke

Gruss
kushkush


Bezug
                        
Bezug
Kettenregel: Antwort
Status: (Antwort) fertig Status 
Datum: 02:25 Fr 08.04.2011
Autor: pelzig

Das ist leider ziemlicher Unsinn. Das totale Differential von [mm]f[/mm] ist nicht etwa die Summe von [mm]\frac{\partial f}{\partial u}[/mm] und [mm]\frac{\partial f}{\partial v}[/mm] oder was auch immer du da gemacht hast, sondern
[mm]Df(u,v)=\pmat{\frac{\partial f_1}{\partial u}&\frac{\partial f_1}{\partial v}\\ \frac{\partial f_2}{\partial u}&\frac{\partial f_1}{\partial v}\\ \frac{\partial f_3}{\partial u}&\frac{\partial f_1}{\partial v}}(u,v) =\pmat{2u+v&v\\ ve^{uv}&ue^{uv}\\ \frac{v}{1+(uv)^2}&\frac{u}{1+(uv)^2}}[/mm]

Analog ist


[mm]Dg(x,y,z)=\pmat{2x&1&0\\ -y&-x&2z}[/mm].
Nun setze alles in die Kettenregel ein: [mm]D(f\circ g)(x,y,z)=Df(g(x,y,z))\cdot Dg(x,y,z)[/mm], wobei hier das Produkt von Matrizen zu nehmen ist!

Gruß, Robert



Bezug
                                
Bezug
Kettenregel: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:00 So 10.04.2011
Autor: kushkush

Hallo,



> Unsinn

> Matrix

Danke!



Gruss
kushkush


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de