www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differenzialrechnung" - Kettenregel ableitung
Kettenregel ableitung < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kettenregel ableitung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:19 Di 21.09.2010
Autor: christine89

Aufgabe
[mm] ((x^4+1)^{1/3}+x^2)^{1/4} [/mm]

mein weg bisher
[mm] (1/4)((x^4+1)^{1/3}+x^2)^{-3/4}... [/mm]

jetzt fehlt mir der ansatz ich hätte jetzt * dann die innere ableitung also [mm] ((1/3)(x^4+1)^{-2/3}+2x) *4x^3 [/mm] gerechnet aber das scheint nicht korrekt zu sein wenn ich die aufgabe im ti lösen lasse und für x ne zahl einsetzte erhalte ich ein anderes ergebnis als das hier von mir berechnete

Hallo ich habe hier ne kleine schwierigkeit mit der Ableitung irgendwo schein ich zu hängen vllt könnt ihr mir weiter helfen

vielen lieben dank schon mal im voraus.

        
Bezug
Kettenregel ableitung: Antwort
Status: (Antwort) fertig Status 
Datum: 19:52 Di 21.09.2010
Autor: Blech

Hi

Mach's systematisch:

[mm]f(x)=((x^4+1)^{1/3}+x^2)^{1/4}[/mm]

$a(x):= [mm] x^{1/4}$ [/mm]
[mm] $b(x):=(x^4+1)^{1/3}+x^2$ [/mm]

1. $f'(x)= a'(b(x))*b'(x)$


Wir brauchen b'(x),  wo liegt da bei der Ableitung die Schwierigkeit:
[mm] $c(x):=(x^4+1)^{1/3}$ [/mm]

$b(x)=c(x) + [mm] x^2$ [/mm]

2. $b'(x)=c'(x) + 2x$


was ist c'(x)?
$d(x):= [mm] x^{1/3}$ [/mm]
[mm] $e(x):=x^4+1$ [/mm]

Also:
$c(x)= d(e(x))$

3. $c'(x)= d'(e(x))*e'(x)$

Jetzt a(x), d(x) und e(x) ableiten, in 3. einsetzen, dann in 2. und dann das wiederum in 1.


Ableitungen lassen sich immer in Einzelteile zerlegen. Definier Teilfunktionen bis Dir die Buchstaben ausgehen, wenn's sein muß =)

ciao
Stefan



Bezug
                
Bezug
Kettenregel ableitung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:26 Di 21.09.2010
Autor: christine89

Aufgabe
[mm] (1/4)((x^4+1)^{1/3}+x^2)^{-3/4}*((1/3)(x^4+1)^{-2/3}*4x^3+2x) [/mm]

ist mein ergebnis

kannst du /ihr mir das bestätigen ?

vielen lieben dank
christine

Bezug
                        
Bezug
Kettenregel ableitung: Antwort
Status: (Antwort) fertig Status 
Datum: 20:33 Di 21.09.2010
Autor: Steffi21

Hallo, perfekt, Steffi

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de