www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Algebra" - Klassenfunktion
Klassenfunktion < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Klassenfunktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:19 Mi 14.07.2010
Autor: clee

Aufgabe
Sei [mm] \psi [/mm] Klassenfunktion auf H [mm] \subset [/mm] G, dann ist
[mm] \bruch{1}{ |G| } \summe_{g \in G} \psi^G(g)=\bruch{1}{ |H| } \summe_{h \in H} \psi(g) [/mm]

wobei [mm] \psi^G(g):=\bruch{1}{ |H| } \summe_{g \in G, xgx^{-1} \in H} \psi (xgx^{1}) [/mm] die von [mm] \psi [/mm] induzierte Klassenfunkton auf G ist.

ich muss in 2 tagen einen vortrag halten und verstehe nicht wir man das zeigt. scheinbar funktionniert das irgendwie so:

[mm] \bruch{1}{ |G| } \summe_{g \in G} \psi^G(g) [/mm]
[mm] =\bruch{1}{ |G||H| } \summe_{g \in G} \summe_{g \in G, xgx^{-1} \in H} \psi(xgx^{-1}) [/mm]
[mm] =\bruch{1}{ |G||H| } \summe_{(g,x) \in GxG, xgx^{-1} \in H} \psi(xgx^{-1}) [/mm]

wenn ich jetzt zeigen kann, dass es für alle $h [mm] \in [/mm] H$ $ |G|$ Paare $(g,x)$ mit [mm] $xgx^{-1}=h$ [/mm] gibt müsste ich ja fertig sein.

anscheinend sieht man das irgendwie mit der bahnformel: $|G|=|G [mm] \circ x|*|G_x|=|\{gxg^{-1}|g \in G\}|*|\{g \in G|gxg^{-1}=x\}|$ [/mm] wie das funktionnieren soll verstehe ich aber nicht ...

wär super wenn mir das jemand erklären könnte oder einen anderen beweis zeigen kann.

        
Bezug
Klassenfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 04:56 Do 15.07.2010
Autor: felixf

Moin

> Sei [mm]\psi[/mm] Klassenfunktion auf H [mm]\subset[/mm] G, dann ist
>  [mm]\bruch{1}{ |G| } \summe_{g \in G} \psi^G(g)=\bruch{1}{ |H| } \summe_{h \in H} \psi(g)[/mm]

Das hinten soll sicher ein [mm] $\psi(h)$ [/mm] sein, oder?

> wobei [mm]\psi^G(g):=\bruch{1}{ |H| } \summe_{g \in G, xgx^{-1} \in H} \psi (xgx^{1})[/mm]

Und hier soll rechts [mm] $\sum_{x \in G, x g x^{-1} \in H} \psi(x [/mm] g [mm] x^{-1})$ [/mm] stehen, oder?

> die von [mm]\psi[/mm] induzierte Klassenfunkton auf G ist.
>  ich muss in 2 tagen einen vortrag halten und verstehe
> nicht wir man das zeigt. scheinbar funktionniert das
> irgendwie so:
>  
> [mm]\bruch{1}{ |G| } \summe_{g \in G} \psi^G(g)[/mm]
>  [mm]=\bruch{1}{ |G||H| } \summe_{g \in G} \summe_{g \in G, xgx^{-1} \in H} \psi(xgx^{-1})[/mm]
>  
> [mm]=\bruch{1}{ |G||H| } \summe_{(g,x) \in GxG, xgx^{-1} \in H} \psi(xgx^{-1})[/mm]

Dann wuerd dieser Schritt naemlich wesentlich mehr Sinn machen.

> wenn ich jetzt zeigen kann, dass es für alle [mm]h \in H[/mm] [mm]|G|[/mm]
> Paare [mm](g,x)[/mm] mit [mm]xgx^{-1}=h[/mm] gibt müsste ich ja fertig
> sein.

Ja.

> anscheinend sieht man das irgendwie mit der bahnformel:

Bei der Operation "Konjugation"?

> [mm]|G|=|G \circ x|*|G_x|=|\{gxg^{-1}|g \in G\}|*|\{g \in G|gxg^{-1}=x\}|[/mm]
> wie das funktionnieren soll verstehe ich aber nicht ...

Es ist ja $| [mm] \{ (g, x) \in G^2 \mid x g x^{-1} = h \}| [/mm] = [mm] \sum_{g \in G} |\{ x \in G \mid x g x^{-1} = h \}|$. [/mm] Die Menge der $g$, fuer die [mm] $|\{ x \in G \mid x g x^{-1} = h \}| [/mm] > 0$ ist, ist ja gerade [mm] $\{ y h y^{-1} \mid y \in G \}$. [/mm] Sei nun $g = y h [mm] y^{-1}$ [/mm] fuer ein $y [mm] \in [/mm] G$; dann ist [mm] $\{ x \in G \mid x g x^{-1} = h \} [/mm] = [mm] \{ x \in G \mid x y h y^{-1} x^{-1} = h \} [/mm] = [mm] \{ x \in G \mid (x y) h (x y)^{-1} = h \} [/mm] = [mm] \{ x \in G \mid x h x^{-1} = h \} \cdot y^{-1}$; [/mm] insbesondere gilt [mm] $|\{ x \in G \mid x g x^{-1} = h \}| [/mm] = [mm] |\{ x \in G \mid x h x^{-1} = h \}| [/mm] = [mm] |G_h|$ [/mm] -- dies ist unabhaengig von $y$!

Also ist $| [mm] \{ (g, x) \in G^2 \mid x g x^{-1} = h \}| [/mm] = [mm] |\{ y h y^{-1} \mid y \in G \}| \cdot |G_h| [/mm] = |G [mm] \circ [/mm] h| [mm] \cdot |G_h| [/mm] = |G|$ nach der Bahnformel.

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de