www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gruppe, Ring, Körper" - Klassengleichung, Gruppe
Klassengleichung, Gruppe < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Klassengleichung, Gruppe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:24 Fr 18.03.2011
Autor: steppenhahn

Aufgabe
Sei G eine endliche Gruppe. Zeige:
a) Für alle [mm] $g,h\in [/mm] G$ sind die Elemente $gh$ und $hg$ in G konjugiert.
b) Sind alle Elemente aus [mm] $G\textbackslash \{1\}$ [/mm] in G konjugiert, so ist $|G| = 2$.
c) Gibt es in G genau ein Element der Ordnung 2, so ist $|ZG| > 1$.



Hallo!

Obige Aufgabe stammt aus einer Algebra 1 Klausur, ich habe sie versucht zu lösen, stoße aber an einigen Stellen noch auf Probleme.

a) Wenn [mm] $g,h\in [/mm] G$, dann ist [mm] $g^{-1} [/mm] (gh) g = hg$, also sind die Elemente konjugiert.

b) Versuch mit Klassengleichung: G operiert auf sich selbst mittels Konjugation. Dann ist für ein beliebiges [mm] $x\in G\textbackslash \{1\}$: [/mm]
Die Bahn $Gx = [mm] \{g^{-1}xg|g\in G\} [/mm] = [mm] G\textbackslash \{1\}$ [/mm] (da alle Elemente zueinander konjugiert sind).
Das Zentrum $ZG = [mm] \{1\}$. [/mm]
Den Stabilisator [mm] $G_x [/mm] = [mm] \{g\in G: g^{-1}xg = x\}$. [/mm]

Klassengleichung liefert: $|G| = |ZG| + |Gx| = 1 + [mm] [G:G_x] [/mm] = 1 + [mm] \frac{|G|}{|G_x|}$, [/mm] also $|G| = [mm] \frac{|G_x|}{|G_x| - 1}$. [/mm]

Mein Ziel wäre es also, [mm] $|G_x| [/mm] = 2$ zu zeigen für irgendein [mm] $x\in G\textbackslash \{1\}$. [/mm] Ich weiß, dass [mm] $1\in G_x$ [/mm] und [mm] $x\in G_x$. [/mm] Für die restlichen [mm] $g\in [/mm] G$ muss [mm] $g^{-1}xg \not= [/mm] x$ gelten, weil ja die ganzen Elemente aus [mm] $G\textbackslash \{1\}$ [/mm] getroffen werden muessen.
Also [mm] $|G_x| [/mm] = 2$. Stimmt das?

c) Ich versuche es wieder mit der Klassengleichung. Da es in $G$ (genau) ein Element x der Ordnung 2 gibt, ist $|G|$ gerade (Lagrange).

Klassengleichung $|G| = |ZG| + [mm] \sum [/mm] |Gx| = |ZG| + [mm] \sum [G:G_x]$. [/mm]

Ich weiß, dass [mm] $1\in [/mm] ZG$. Ich weiß, dass für alle [mm] $x\in [/mm] G$, [mm] x\not= [/mm] 1 der Stabilisator [mm] $G_x$ [/mm] mindestens die beiden Elemente 1 und x beinhaltet. Aber hier komme ich nicht weiter und bitte um Hilfe :-)


Viele Grüße,
Stefan

        
Bezug
Klassengleichung, Gruppe: Antwort
Status: (Antwort) fertig Status 
Datum: 13:20 Fr 18.03.2011
Autor: SEcki


> also [mm]|G| = \frac{|G_x|}{|G_x| - 1}[/mm].

Mal abgesehn davon, dass da wohl die Gruppen vertauscht sind, ist es eine ganz leichte Überlegung, dass [m]\frac{a}{a-1}[/m] für natürliches a nur dann wieder natürlich ist, wenn [m]a=2[/m] gilt.

> c)

Wen h Ordnung 2 hat, welche hat dann [m]ghg^{-1}[/m]? Daraus folgt eigentlich schon alles ...

SEcki

Bezug
                
Bezug
Klassengleichung, Gruppe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:27 Fr 18.03.2011
Autor: steppenhahn


Hallo Secki,

danke für deine Antwort!


> > also [mm]|G| = \frac{|G_x|}{|G_x| - 1}[/mm].
>  
> Mal abgesehn davon, dass da wohl die Gruppen vertauscht
> sind, ist es eine ganz leichte Überlegung, dass
> [mm]\frac{a}{a-1}[/mm] für natürliches a nur dann wieder
> natürlich ist, wenn [mm]a=2[/mm] gilt.

Ja, da hast du recht...


> > c)
>
> Wen h Ordnung 2 hat, welche hat dann [mm]ghg^{-1}[/mm]? Daraus folgt
> eigentlich schon alles ...

Dann hat das auch Ordnung 2.
[mm] $(ghg^{-1})*(ghg^{-1}) [/mm] = 1.$

Das bedeutet, es muss [mm] $ghg^{-1} [/mm] = h$ sein, weil es ja das einzige Element mit Ordnung 2 ist.
Also gilt $gh = hg$ für alle [mm] $g\in [/mm] G.$

Das bedeutet, das Zentrum besitzt außer dem neutralen Element auch noch h als Element. --> Mindestens Mächtigkeit 2.

Danke!
Stefan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de