www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Zahlentheorie" - Klassenzahl Q(sqrt(10))
Klassenzahl Q(sqrt(10)) < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Klassenzahl Q(sqrt(10)): Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:47 Mi 04.06.2008
Autor: bksstock

Hallo!
Für heute eine letzte Frage zur Zahlentheorie von mir:
Es wird behauptet, dass der algebraische Zahlkörper [mm] \IQ (\wurzel{10} [/mm] ) die Klassenzahl 2 hat.
Da die Diskriminante des Zahlkörpers den Betrag 40 hat, sagt mir die Minkowski-Schranke, dass ich bei der Betrachtung der Klassengruppe nur Ideale der Norm <=3 betrachten muss, oder? Davon müsste es dann genau zwei geben. Welches sind denn die Ideale mit dieser Eigenschaft und wie zeige ich das diese die einzigen mit der Norm <=3 sind?


        
Bezug
Klassenzahl Q(sqrt(10)): Antwort
Status: (Antwort) fertig Status 
Datum: 09:34 Do 05.06.2008
Autor: felixf

Hallo

>  Für heute eine letzte Frage zur Zahlentheorie von mir:
>  Es wird behauptet, dass der algebraische Zahlkörper [mm]\IQ (\wurzel{10}[/mm]
> ) die Klassenzahl 2 hat.
>
>  Da die Diskriminante des Zahlkörpers den Betrag 40 hat,
> sagt mir die Minkowski-Schranke, dass ich bei der
> Betrachtung der Klassengruppe nur Ideale der Norm <=3
> betrachten muss, oder?

Ob es genau [mm] $\le [/mm] 3$ ist weiss ich grad nicht. Allerdings: es reicht voellig aus, alle Primideale mit Norm [mm] $\le [/mm] 3$ anzuschauen und nicht alle Ideale, da alle Ideale Produkte von Primidealen sind und die Norm multiplikativ ist.

> Davon müsste es dann genau zwei geben.

Woher weisst du das?

> Welches sind denn die Ideale mit dieser Eigenschaft
> und wie zeige ich das diese die einzigen mit der Norm <=3
> sind?

Sei [mm] $\mathcal{O}$ [/mm] der Ganzheitsring in [mm] $\IQ(\sqrt{10})$ [/mm] und [mm] $\mathfrak{p}$ [/mm] ein Primideal (ungleich Null, natuerlich!) in [mm] $\mathcal{O}$. [/mm] Dann ist [mm] $\mathfrak{p} \cap \IZ [/mm] = (p)$ fuer eine Primzahl $p$.

Weiterhin hat man die Inklusion [mm] $\IZ [/mm] / (p) [mm] \subseteq \mathcal{O} [/mm] / [mm] \mathfrak{p}$. [/mm] Deshalb ist [mm] $N(\mathfrak{p}) \ge [/mm] p$.

Die einzigen Ideale, die also in Frage kommen, sind die Primideale von [mm] $\mathcal{O}$, [/mm] die ueber 2 und 3 liegen. Du musst also schauen, wie 2 und 3 in [mm] $\mathcal{O}$ [/mm] aufspalten. (Das hattet ihr sicher schon in der VL!) Dies liefert dir dann die Primideale, die ueber 2 bzw. 3 liegen, und sagt dir auch welche Norm sie haben:

- Gibt es ueber $p$ zwei verschiedene Primideale in [mm] $\mathcal{O}$, [/mm] so haben beide Norm $p$.

- Gibt es ueber $p$ ein verzweigtes Primideal in [mm] $\mathcal{O}$, [/mm] so hat dieses Ideal ebenfalls Norm $p$.

- Gibt es ueber $p$ ein traeges Primideal, sprich $(p)$ ist prim in [mm] $\mathcal{O}$, [/mm] so ist die Norm davon gerade [mm] $p^2$. [/mm]

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de