www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Stochastik" - Klausur Stochastik
Klausur Stochastik < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Klausur Stochastik: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:06 Sa 29.01.2011
Autor: Nevanna

Aufgabe 1
Ein Büroangestellter nimmt morgens seine Arbeit auf. Modellieren Sie die Zeit, die bis zum Eingang der zweiten Telefonanrufs vergeht! Bestimmen Sie die Verteilung dieser Zeit!

Aufgabe 2
Sei [mm] h_{n}, [/mm] n natürlich, eine höchstens polynomial anwachsende Folge reeller Zahlen. Geben Sie ein Monte-Carlo Verfahren zur Berechnung der Summe [mm] \sum^{infty}_{k=0} h_{k} [/mm] /k .

Hallo ihr Lieben,

die Klausurenzeit steht an, und diese zwei Aufgaben stammen von einer alten Klausur, die ich zu bearbeiten versuche - nur bekomme ich nicht einmal den Ansatz hin -.-"

zur (1) Was bedeutet hier "Modellieren Sie die Zeit"  - hier ist mir die Aufgabenstellung einfach unklar, ich schätze die Lösung ist dann einfach

zur (2) Das Monte-Carlo-Verfahren wurde bei uns in ca. 2 Minuten runtergerattert, daher verstehe ich kaum etwas davon...

Kann mir jemand das erklären?

Danke!

lg

        
Bezug
Klausur Stochastik: Hinweis
Status: (Antwort) fertig Status 
Datum: 22:58 So 30.01.2011
Autor: sinalco

Aufgabe 1:

Was genau da genau verlangt wird, kann ich dir nicht sagen. Kann dir aber soviel sagen.
Also die Anzahl der eigehenden Anrufe ist Poisson-verteilt und wird modelliert durch eine Zufallsvariable [mm] X_t. [/mm]

Außerdem könnte man eine weitere Zufallsvariable T:= inf [mm] \{t\ge 0 | X_t \ge 2 \} [/mm] definieren. Diese ist dann exponentiell verteilt.

Mehr kann ich dazu auch nicht sagen.

Aufgabe 2:

Hier würde ich auch mit der Poisson-Verteilung ansetzen. Und zwar kannst du erkennen, dass für [mm] \lampda [/mm] = 1 in der Poisson-Verteilung sich genau das ergibt, was dort steht. (bist auf einen Vorfaktor [mm] e^{-1}) [/mm]

(du hast übrigens das Fakultätszeichen im Nenner vergessen nach dem k ;-) )

Nun kannst du annehmen, dass deine Zufallsvariablen [mm] X_k [/mm] , k [mm] \in \N [/mm] alle i.i.d verteilt sind und musst noch prüfen, dass das zweite Moment [mm] E[X_k^{2}] [/mm] < [mm] \infty [/mm] ist und [mm] Var(X_k) [/mm] < [mm] \infty. [/mm]

Somit sind die Bedingungen für das schwache (sowie das starke) Gesetz der Großen Zahlen erfüllt.

Dann folgt: [mm] \bruch{e}{N} \summe_{k=1}^{N} h(X_k) \to \summe_{i=1}^{n} h_k/k! [/mm]

Keine Gewähr auf vollkommene Richtigkeit, aber die Vorgehensweise müsste stimmen.

Viel Glück am Mittwoch ;)

Bezug
                
Bezug
Klausur Stochastik: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:57 Mo 31.01.2011
Autor: Nevanna

Danke ;)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de