Kleine Det -> 'große' Inverse < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 21:53 Mi 06.06.2007 | Autor: | cantor |
Hallo!
Ich lerne grade ein bißchen Statistik und wäre über ein bißchen 'Nachhilfe' in Lineare Algebra sehr dankbar!
Es wird immer geschrieben, dass die Inverse einer Matrix explodiert wenn die Determinante nahe bei Null ist. Wie genau kann man das mathematisch begründen?
Und was hat das mit den Eigenwerten zu tun? (Die fließen ja in die Konditionszahl ein, die in der Statistik aussagen soll wie 'nahe' eine Matrix an linearer Abhängigkeit, also det=0, dran ist)
Vielen Dank!!
Grüße Cantor
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 22:30 Mi 06.06.2007 | Autor: | felixf |
Hallo Cantor!
> Es wird immer geschrieben, dass die Inverse einer Matrix
> explodiert wenn die Determinante nahe bei Null ist. Wie
> genau kann man das mathematisch begründen?
Die Determinante der Inversen ist das Inverse der Determinanten. Wenn die Matrix (nennen wir sie also $A$) eine sehr kleine Determiante hat, dann ist die Determinante von [mm] $A^{-1}$ [/mm] sehr gross (und damit muessen auch die Eintraege gross sein).
> Und was hat das mit den Eigenwerten zu tun? (Die fließen ja
> in die Konditionszahl ein, die in der Statistik aussagen
> soll wie 'nahe' eine Matrix an linearer Abhängigkeit, also
> det=0, dran ist)
Die Determinante einer $n [mm] \times [/mm] n$-Matrix ist gerade das Produkt aller $n$ Eigenwerte (also mit Vielfachheiten gezaehlt, inklusive der komplexen Eigenwerte). Und die Eigenwerte von [mm] $A^{-1}$ [/mm] sind die Inversen der Eigenwerte von $A$. Wenn [mm] $\det [/mm] A$ also sehr klein ist, muss es auch kleine Eigenwerte geben, und die Eigenwerte von [mm] $A^{-1}$ [/mm] sind damit recht gross.
Fuer regulaere Matrizen ist die Konditionszahl einer Matrix ja durch [mm] $\| [/mm] A [mm] \| \cdot \| A^{-1} \|$ [/mm] gegeben, wobei [mm] $\| \bullet \|$ [/mm] eine Matrixnorm ist. Nun gilt immer [mm] $\| [/mm] A [mm] \| \ge \sigma(A)$, [/mm] wobei [mm] $\sigma(A)$ [/mm] der Spektralradius von $A$ ist, also der Betrag des betragsgroessten Eigenwerts. Damit ist die Konditionszahl [mm] $\ge \sigma(A) \sigma(A^{-1})$; [/mm] wenn die Eigenwerte von $A$ also [mm] $\lambda_1, \dots, \lambda_n$ [/mm] sind mit [mm] $|\lambda_1| \le \dots \le |\lambda_n|$, [/mm] so ist [mm] $\sigma(A) \sigma(A^{-1}) [/mm] = [mm] |\lambda_n| \cdot |\frac{1}{\lambda_1}|$. [/mm] Ist also [mm] $\lambda_n$ [/mm] normal gross und [mm] $\lambda_1$ [/mm] sehr klein, so ist das Produkt ziemlich gross.
HTH & LG Felix
|
|
|
|