www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Wahrscheinlichkeitstheorie" - Kleinste Sigma-Algebra
Kleinste Sigma-Algebra < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kleinste Sigma-Algebra: Herangehensweise
Status: (Frage) beantwortet Status 
Datum: 15:56 Mi 25.07.2012
Autor: Dicen

Aufgabe
i) Wir betrachten die Menge Ω = {−3, −2, −1, 0, 1, 2, 3} und die folgenden Zufallsvariablen
(a) X(ω) = 2ω.
(b) X(ω) = ω 2 .
(c) X(ω) = |ω| + 2.
Bestimmen Sie jeweils die kleinste σ-Algebra F uber Ω, sodass X eine Zufallsvariable auf (Ω, F, P ) ist. Wieso spielt hier das Wahrscheinlichkeitsmaß P keine Bedeutung?

(ii) Sei nun das W-Maß P ({ω}) = 1/6 für ω ∈ Ω \ {0} und P ({0}) = 0. Bestimmen Sie für (b)
und (c) die Verteilung PX von X.

Hey, ich habe ein wenig meine Probleme mit der Aufgabe.

Also, ich habe mir überlegt, dass die Urbilder der Zufallsvariable in der Sigma-Algebra  liegen müssen.

Machen wir das mal für a)

Also ImX={-6, -4, -2 , 0, 2, 4, 6}
So wie ich das sehe ist hier die kleinste Sigma-Algebra die Potenzmenge von Omega, weil die Abbildung bijektiv ist.

Ich versuchs mal noch für b)

ImX={0, 1, 4, 9}
Jetzt betrache ich alle Urbilder X^-1({1})={-1,1}
Das mache ich für alle Möglichkeiten und komme auf:
F'={{0},{-1,1},{-2,2},{-4,4}}
Jetzt würde ich noch die Komplemente mit reinehmen, so dass sich F zu:
F={{0},{-4,-2,-1,1,2,4},{-1,1},{-4,-2,0,2,4},{-2,2},{-4,-1,0,1,4},{-4,4},{-2,-1,0,1,2}} ergibt.
Muss ich jetzt noch die Vereinigungen der Mengen mit reinnehmen?

Wäre sehr froh über Hilfe, ich schreibe nächste Woche Klausur und das hier ist mir noch nicht so ganz klar. :)

        
Bezug
Kleinste Sigma-Algebra: Antwort
Status: (Antwort) fertig Status 
Datum: 10:53 Fr 27.07.2012
Autor: meili

Hallo Dicen,

> i) Wir betrachten die Menge Ω = {−3, −2, −1, 0, 1,
> 2, 3} und die folgenden Zufallsvariablen
>  (a) X(ω) = 2ω.
>  (b) X(ω) = ω 2 .
>  (c) X(ω) = |ω| + 2.
>  Bestimmen Sie jeweils die kleinste σ-Algebra F uber Ω,
> sodass X eine Zufallsvariable auf (Ω, F, P ) ist. Wieso
> spielt hier das Wahrscheinlichkeitsmaß P keine Bedeutung?
>  
> (ii) Sei nun das W-Maß P ({ω}) = 1/6 für ω ∈ Ω \ {0}
> und P ({0}) = 0. Bestimmen Sie für (b)
>  und (c) die Verteilung PX von X.
>  Hey, ich habe ein wenig meine Probleme mit der Aufgabe.
>
> Also, ich habe mir überlegt, dass die Urbilder der
> Zufallsvariable in der Sigma-Algebra  liegen müssen.

[ok]

>  
> Machen wir das mal für a)
>  
> Also ImX={-6, -4, -2 , 0, 2, 4, 6}
>  So wie ich das sehe ist hier die kleinste Sigma-Algebra
> die Potenzmenge von Omega, weil die Abbildung bijektiv
> ist.

[ok]

>  
> Ich versuchs mal noch für b)
>  
> ImX={0, 1, 4, 9}
>  Jetzt betrache ich alle Urbilder X^-1({1})={-1,1}
>  Das mache ich für alle Möglichkeiten und komme auf:
>  F'={{0},{-1,1},{-2,2},{-4,4}}
>  Jetzt würde ich noch die Komplemente mit reinehmen, so
> dass sich F zu:
>  
> F={{0},{-4,-2,-1,1,2,4},{-1,1},{-4,-2,0,2,4},{-2,2},{-4,-1,0,1,4},{-4,4},{-2,-1,0,1,2}}
> ergibt.

Statt -4 und 4 muss es -3 und 3 sein.  Nur Tippfehler?

>  Muss ich jetzt noch die Vereinigungen der Mengen mit
> reinnehmen?

Ja, jede abzählbare Vereinigung von Elementen aus F gehört auch zu F.
Da [mm] $\Omega$ [/mm] endlich ist, sind es alle Vereinigungen.

Auch ist [mm] $\Omega \in$ [/mm] F und [mm] $\emptyset \in$ [/mm] F.

Vergleiche []Sigma-Algebra  .

>  
> Wäre sehr froh über Hilfe, ich schreibe nächste Woche
> Klausur und das hier ist mir noch nicht so ganz klar. :)

Gruß
meili


Bezug
                
Bezug
Kleinste Sigma-Algebra: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:55 Fr 27.07.2012
Autor: Dicen

Ja, war nur ein "Tippfehler", beziehungsweise Unkonzentriertheit.

Die Vereinigungen sind dann ja nur noch viel Arbeit, danke schön. :)


e: Das ist übrigens keine neue Frage, hab nur auf den falschen Button geklickt.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de