Kleinsten Teilraum finden < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Bestimmen Sie den kleinsten Teilraum des Vektorraumes aus 472) der die Polynome [mm] 2x^2 [/mm] + x − 1, [mm] 3x^2 [/mm] − x + 2 und [mm] 5x^2 [/mm] − 5x + 8 enthält. |
Ich habe das Beispiel bereits gelöst (mit dem Finder der linearen Hülle). Würde gerne wissen ob es korrekt ist und warum die lineare Hülle der kleinste Teilraum ist. :)
Meine Lösung: http://i.imgur.com/ganMYPl.png
Vielen Dank
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
> Bestimmen Sie den kleinsten Teilraum des Vektorraumes aus
> 472) der die Polynome [mm]2x^2[/mm] + x − 1, [mm]3x^2[/mm] − x + 2 und
> [mm]5x^2[/mm] − 5x + 8 enthält.
> Ich habe das Beispiel bereits gelöst (mit dem Finder der
> linearen Hülle). Würde gerne wissen ob es korrekt ist und
> warum die lineare Hülle der kleinste Teilraum ist. :)
>
> Meine Lösung: http://i.imgur.com/ganMYPl.png
Hallo,
.
Eingescannte/fotografierte Lösungen sind für Dich bequem.
Für diejenigen, die Dir helfen möchten, aber sind sie ziemlich unbequem: man kann nichts dazwischenschreiben, nicht kopieren und muß immer hin und herklicken.
Tippe doch in Zukunft Deine Lösungen ein. Am Anfang magst Du die Formeleingabe schwierig finden, aber nach ein paar mal geht das ganz flott.
Zu Deiner Aufgabe:
zunächst mal wäre es nicht ganz unsinnig zu verraten, was mit "Vektorraum aus 472" gemeint ist.
Nun gut, ich bin nicht ganz frei von Fantasie: wohl der Vektorraum der Polynome mit Koeffizienten aus [mm] \IQ. [/mm] Oder der VR der Polynome vom Höchstgrad 2 mit Koeffizienten aus [mm] \IQ.
[/mm]
Richtig ist, daß der kleinste VR, der die drei Polynome enthält, der Span dieser drei Polynome ist.
Nicht richtig ist Dein Endergebnis, welches lautet, daß der Span der drei Polynome der VR der Polynome vom Höchstgrad 2 ist.
Versuch' z.B. mal, das Polynom [mm] x^2 [/mm] aus den dreien zu erzeugen...
Also nochmal zurückgerudert:
die drei Polynome erzeugen den kleinsten Raum, der sie enthält. Sie sind ein Erzeugendensystem.
Jedes Erzeugendensystem enthält eine Basis.
Du mußt nun also aus dem Erzeugendensystem eine Basis abfischen.
Wenn Du die drei Polynome prüfst, wirst Du feststellen, daß sie linear abhängig sind.
Die Basis des gesuchten Raumes hat also höchstens zwei Elemente.
LG Angela
|
|
|
|