www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Algebra" - Kochrezept für Minimalpolynome
Kochrezept für Minimalpolynome < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kochrezept für Minimalpolynome: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:28 Mo 04.01.2010
Autor: kuemmelsche

Aufgabe
Bestimmen Sie das Minimalpoynom von [mm] $\alpha:= \wurzel{5+2*\wurzel{5}}$ [/mm] über [mm] $\IQ$. [/mm]

Hallo zusammen,

die Aufgabe oben ist nur ein Bsp.

Die Methode die ich kenne, ist erst die ersten paar Potenzen von [mm] $\alpha$ [/mm] zu bestimmen, solange bis alle Potenzen von [mm] $\alpha^0,...,\alpha^m$ [/mm] lin. unabhängig sind, aber [mm] $\alpha^0,...,\alpha^{m+1}$ [/mm] lin. abhängig sind.

Dann kann ich ein das Minimalpolynom aufstellen, die Vorfaktoren ergeben sich dann durch:

[mm] $a_0+a_1*\alpha+....+a_{m+1}*\alpha^{m+1}=0$ [/mm]

Oder irre ich mich da?

Gibt es denn einen "eleganteren" Weg. Ich komm mir bei diesem Weg vor wie mit einer Brechstange.

lg Kai

        
Bezug
Kochrezept für Minimalpolynome: Antwort
Status: (Antwort) fertig Status 
Datum: 12:11 Di 05.01.2010
Autor: felixf

Hallo!

> Bestimmen Sie das Minimalpoynom von [mm]\alpha:= \wurzel{5+2*\wurzel{5}}[/mm]
> über [mm]\IQ[/mm].
>
> die Aufgabe oben ist nur ein Bsp.
>
> Die Methode die ich kenne, ist erst die ersten paar
> Potenzen von [mm]\alpha[/mm] zu bestimmen, solange bis alle Potenzen
> von [mm]\alpha^0,...,\alpha^m[/mm] lin. unabhängig sind, aber
> [mm]\alpha^0,...,\alpha^{m+1}[/mm] lin. abhängig sind.

Genau.

> Dann kann ich ein das Minimalpolynom aufstellen, die
> Vorfaktoren ergeben sich dann durch:
>  
> [mm]a_0+a_1*\alpha+....+a_{m+1}*\alpha^{m+1}=0[/mm]
>  
> Oder irre ich mich da?

Doch, das stimmt so.

> Gibt es denn einen "eleganteren" Weg. Ich komm mir bei
> diesem Weg vor wie mit einer Brechstange.

Im Allgemeinen geht es nicht eleganter. Oft jedoch schon, z.B. bei dem Ausdruck oben. Dieser liegt in dem Koerperturm [mm] $\IQ(\alpha, \wurzel{5}) \supseteq \IQ(\wurzel{5}) \supsetneqq \IQ$; [/mm] dieser Koerperturm hat Grad 2 oder 4 (je nachdem ob [mm] $\alpha \in \IQ(\sqrt{5})$ [/mm] ist oder nicht). Also muss das Minimalpolynom von [mm] $\alpha$ [/mm] ueber [mm] $\IQ$ [/mm] Grad 1, 2 oder 4 haben.

Es reicht also zu zeigen, dass [mm] $\alpha \not\in \IQ(\sqrt{5})$ [/mm] ist, damit das Minimalpolynom Grad 4 haben muss.

Hier kann man dann so vorgehen: [mm] $\alpha^2 [/mm] = 5 + 2 [mm] \sqrt{5}$. [/mm] Wenn das Minimalpolynom von $5 + 2 [mm] \sqrt{5}$ [/mm] ueber [mm] $\IQ$ [/mm] durch [mm] $x^2 [/mm] + a x + b$ gegeben ist, dann ist das Minimalpolynom von [mm] $\alpha$ [/mm] gegeben durch [mm] $x^4 [/mm] + a [mm] x^2 [/mm] + b$ (einfach $x$ durch [mm] $x^2$ [/mm] substituieren).

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de