www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Matrizen" - Koeffizienten bestimmen
Koeffizienten bestimmen < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Koeffizienten bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:49 Mo 16.04.2007
Autor: Nicole20

Hallo Leute! Also ich habe eine Matrix A gegeben:

A= [mm] \pmat{a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}} [/mm]

Nun sollen alle Koeffizienten des charakteristischen Polynoms dieser 3 x 3 Matrix mit Einträgen aus dem Körper K bestimmt werden.

Das ist eine blöde Aufgabe und ich hoffe sehr stark auf Hilfe!






Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

        
Bezug
Koeffizienten bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 22:00 Mo 16.04.2007
Autor: angela.h.b.


> Hallo Leute! Also ich habe eine Matrix A gegeben:
>  
> A= [mm]\pmat{a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}}[/mm]
>  
> Nun sollen alle Koeffizienten des charakteristischen
> Polynoms dieser 3 x 3 Matrix mit Einträgen aus dem Körper K
> bestimmt werden.

Hallo,

wenn ich es recht verstehe, mußt Du das charakteristische Polynom von A aufschreiben,
also die Determinante von  [mm] \pmat{x-a_{11} & -a_{12} & -a_{13} \\ -a_{21} & x-a_{22} & -a_{23} \\ -a_{31} & -a_{32} & x-a_{33}}. [/mm]

Gruß v. Angela

Bezug
                
Bezug
Koeffizienten bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:07 Di 17.04.2007
Autor: Nicole20

Gut ok, also die Determinante habe ich aufgestellt, aber wie komme ich jetzt an die Koeffizienten?

Bezug
                        
Bezug
Koeffizienten bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 14:23 Di 17.04.2007
Autor: statler

Mahlzeit Nicole!

> Gut ok, also die Determinante habe ich aufgestellt, aber
> wie komme ich jetzt an die Koeffizienten?

Indem du die ausgerechnete Determinante nach Potenzen von x sortierst.
Ist nicht [mm] P_{A}(x) [/mm] = det(xI - A)? Bei Angela sind die Vorzeichen nicht korrekt.

Gruß
Dieter


Bezug
                                
Bezug
Koeffizienten bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:36 Di 17.04.2007
Autor: Nicole20

Gut also ich habe bei meiner Determinanten x³ und x² und x. Aber meine Determinante ist irre lang und es lässt sich nichts weg kürzen. Mein Ergebnis ist bis hierhin folgendes:
[mm] a_{13}a_{22}a_{31}-xa_{31}a_{13}+a_{11}a_{23}a_{32}-xa_{23}a_{32}+a_{21}a_{33}a_{12}-xa_{21}a_{12}-a_{11}a_{22}a_{33}+xa_{11}a_{22}+xa_{11}a_{33}-x²a_{11}+xa_{22}a_{33}-x²a_{22}-x²a_{33}+x³-a_{12}a_{23}a_{31}-a_{13}a_{21}a_{32} [/mm]

Stimmt das soweit?
Und wie gehts jetzt weiter?

Bezug
                                        
Bezug
Koeffizienten bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 14:47 Di 17.04.2007
Autor: statler


> Gut also ich habe bei meiner Determinanten x³ und x² und x.

Und das Glied ohne x ...

> Aber meine Determinante ist irre lang und es lässt sich
> nichts wegkürzen. Mein Ergebnis ist bis hierhin
> folgendes:
>  
> [mm]a_{13}a_{22}a_{31}-xa_{31}a_{13}+a_{11}a_{23}a_{32}-xa_{23}a_{32}+a_{21}a_{33}a_{12}-xa_{21}a_{12}-a_{11}a_{22}a_{33}+xa_{11}a_{22}+xa_{11}a_{33}-x²a_{11}+xa_{22}a_{33}-x²a_{22}-x²a_{33}+x³-a_{12}a_{23}a_{31}-a_{13}a_{21}a_{32}[/mm]
>  
> Stimmt das soweit?
>  Und wie gehts jetzt weiter?

Du hast ja nicht wirklich sortiert! Und dann müßtest du ausklammern. Bei [mm] x^{3} [/mm] steht als Koeffizient eine 1, das ist leicht. Der von x ist nicht wirklich prickelnd. Aber vielleicht fällt dir an den beiden anderen noch was auf ...
(... wenn du dir A noch mal genau anguckst.)

Rinjehaun
Dieter



Bezug
                                                
Bezug
Koeffizienten bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:52 Di 17.04.2007
Autor: Nicole20

Also der Koeffizient von x²müsste doch -1 sein oder nicht?
Und bei x fällt mir auf dass das die Diagonalelemente von a sind oder nicht?

Bezug
                                                        
Bezug
Koeffizienten bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 15:18 Di 17.04.2007
Autor: statler

Also in aller Ruhe und Freundschaft:

> Also der Koeffizient von x²müsste doch -1 sein oder nicht?
>  Und bei x fällt mir auf dass das die Diagonalelemente von
> a sind oder nicht?

Es ist
[mm] a_{13}a_{22}a_{31}-xa_{31}a_{13}+a_{11}a_{23}a_{32}-xa_{23}a_{32}+a_{21}a_{33}a_{12}-xa_{21}a_{12}-a_{11}a_{22}a_{33}+xa_{11}a_{22}+xa_{11}a_{33}-x²a_{11}+xa_{22}a_{33}-x²a_{22}-x²a_{33}+x³-a_{12}a_{23}a_{31}-a_{13}a_{21}a_{32} [/mm]
=
[mm] x³-x²a_{11}-x²a_{22}-x²a_{33}-xa_{23}a_{32}+xa_{11}a_{22}+xa_{11}a_{33}+xa_{22}a_{33}-xa_{31}a_{13}-xa_{21}a_{12}+a_{13}a_{22}a_{31}+a_{11}a_{23}a_{32}+a_{21}a_{33}a_{12}-a_{11}a_{22}a_{33}-a_{12}a_{23}a_{31}-a_{13}a_{21}a_{32} [/mm]
=
[mm] x³-(a_{11}-a_{22}-a_{33})x²+(...)x+a_{13}a_{22}a_{31}+a_{11}a_{23}a_{32}+a_{21}a_{33}a_{12}-a_{11}a_{22}a_{33}-a_{12}a_{23}a_{31}-a_{13}a_{21}a_{32} [/mm]

LG
Dieter


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de