www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Zahlentheorie" - Koeffizienten bestimmen
Koeffizienten bestimmen < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Koeffizienten bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:42 Di 24.05.2011
Autor: Physy

Aufgabe
[mm] f(x):=\produkt_{n=1}^{p-1}(x-n)=\summe_{k=0}^{p-1}s_{k}(p)*x^k [/mm]

Bestimme die Koeffizienten [mm] s_{0}(p), s_{1}(p), s_{p-1}(p) [/mm]

p ist Primzahl > 3

Das ist der a-Teil einer Kette von Aufgaben. Leider komme ich hier gar nicht weiter. Ich brauche die Antwort aber um weitere Fragen beantworten zu können...

        
Bezug
Koeffizienten bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:58 Di 24.05.2011
Autor: meili

Hallo Physy,

Schon mal
[mm]f(x):=\produkt_{n=1}^{p-1}(x-n)=\summe_{k=0}^{p-1}s_{k}(p)*x^k[/mm]
konkret aufgeschrieben für p = 5, 7, 11, ... ?

>  
> Bestimme die Koeffizienten [mm]s_{0}(p), s_{1}(p), s_{p-1}(p)[/mm]

[mm] $s_{p-1}(p)$ [/mm] könntest Du sicher nach etwas ansehen des Produkts für alle p hinschreiben.
[mm] $s_{0}(p)$ [/mm] ist auch mit etwas Übung mit Produkten einfach.

> p ist Primzahl > 3
>  Das ist der a-Teil einer Kette von Aufgaben. Leider komme
> ich hier gar nicht weiter. Ich brauche die Antwort aber um
> weitere Fragen beantworten zu können...

Gruß
meili

Bezug
                
Bezug
Koeffizienten bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:23 Di 24.05.2011
Autor: Physy

Ich habe nun alle drei Koeffizienten gefunden, weiß aber nicht wie ich formal zeigen kann, dass es diese tatsächlich für alle Primzahlen > 3 sind. Schon für [mm] s_{p-1} [/mm] wüsste ich nicht, wie ich das formal zeigen oder begründen kann ...
Bezug
                        
Bezug
Koeffizienten bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 07:33 Mi 25.05.2011
Autor: ullim

Hi,

schreib doch mal wie die Koeffizienten aussehen. Bei [mm] s_0(p) [/mm] hast Du doch wahrscheinlich [mm] (-1)^{p-1}(p-1)! [/mm] heraus. Das kann man formal per Induktion zeigen. Bei den anderen Koeffizienten geht das auch so.


Bezug
                                
Bezug
Koeffizienten bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:43 Mi 25.05.2011
Autor: Physy

Wie soll ich denn induktiv zeigen, dass [mm] f(x):=\produkt_{i=1}^{n}(x-i)=\summe_{i=0}^{n}s_{i}(n+1)*x^i [/mm]

Im Induktionsschritt wäre ja zu zeigen, dass:

[mm] \produkt_{i=1}^{n+1}(x-i)=\summe_{i=0}^{n+1}s_{i}(n+2)*x^i [/mm]

Bezug
                                        
Bezug
Koeffizienten bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:05 Mi 25.05.2011
Autor: meili

Hallo Physy,

> Wie soll ich denn induktiv zeigen, dass
> [mm]f(x):=\produkt_{i=1}^{n}(x-i)=\summe_{i=0}^{n}s_{i}(n+1)*x^i[/mm]
>
> Im Induktionsschritt wäre ja zu zeigen, dass:
>  
> [mm]\produkt_{i=1}^{n+1}(x-i)=\summe_{i=0}^{n+1}s_{i}(n+2)*x^i[/mm]  

Als Induktionsanfang könntest Du  (x-1)(x-2) nehmen.
(x-1)(x-2) ausmultiplizieren und Du erhältst die Summe.
Die Eigenschaften der Koeffizienten [mm] $s_i$ [/mm] vergleichen.


Für den Schritt von n nach n+1 kannst Du von [mm]\summe_{i=0}^{n}s_{i}*x^i[/mm]  ausgehen,
und die Summe mit (x-(n+1)) multiplizieren, was [mm]\produkt_{i=1}^{n+1}(x-i)[/mm]  entspricht.

Gruß
meili

Bezug
                                        
Bezug
Koeffizienten bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:57 Mi 25.05.2011
Autor: ullim

Hi,

so wie meili sagt ist es richtig.

[mm] \produkt_{i=1}^{n+1}(x-i)=\produkt_{i=1}^{n}(x-i)[x-(n+1)]=\summe_{i=0}^{n}s_ix^i[x-(n+1)]=\summe_{i=0}^{n+1}\alpha_ix^i [/mm] mit

[mm] \alpha_0=-s_0(n+1) [/mm]

[mm] \alpha_1=s_0-s_1(n+1) [/mm]

[mm] \alpha_{n+1}=s_n [/mm]

Jetzt musst Du die IV jeweils anwenden und bist fertig.


Bezug
                                                
Bezug
Koeffizienten bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:06 Do 26.05.2011
Autor: Physy

[mm] \summe_{i=0}^{n}s_ix^i[x-(n+1)]=\summe_{i=0}^{n+1}\alpha_ix^i [/mm]

Ich verstehe diesen Schritt nicht. Wie erhöhst Du den oberen Index einfach um eins und kommst dann auf diese Form der Koeffizienten?? Wenn ich den Index erhöhe, dann müsste da ja stehen:

[mm] \summe_{i=0}^{n+1}s_ix^i[x-(n+1)] [/mm] - [mm] s_{n+1}x^{n+1}*(x-(n+1)) [/mm]


Bezug
                                                        
Bezug
Koeffizienten bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:31 Do 26.05.2011
Autor: MathePower

Hallo Physy,

>
> [mm]\summe_{i=0}^{n}s_ix^i[x-(n+1)]=\summe_{i=0}^{n+1}\alpha_ix^i[/mm]
>  
> Ich verstehe diesen Schritt nicht. Wie erhöhst Du den
> oberen Index einfach um eins und kommst dann auf diese Form
> der Koeffizienten?? Wenn ich den Index erhöhe, dann



Die links stehende Summe wurde zusammengefasst.
Und zwar ergibt sich der höchste Exponent für x , wenn i=n ist.

Dann ist [mm]x^{n}*x=x^{n+1}[/mm]

Und da der niederste Exponent sich gerade für i=0 ergibt,
hat man letztendlich die zusammgefasste Summe

[mm]\summe_{i=0}^{n+1}\alpha_ix^i[/mm]



> müsste da ja stehen:
>  
> [mm]\summe_{i=0}^{n+1}s_ix^i[x-(n+1)][/mm] -
> [mm]s_{n+1}x^{n+1}*(x-(n+1))[/mm]

>


Gruss
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de