Koeffizientenvergleich < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 18:27 So 12.07.2009 | Autor: | Nickles |
Hallo ,
ich habe eine lineare inhomogene Differentialgleichung 2ter Ordnung die ich durch einen Ansatz und dann einen Koeffizientenvergleich zu Lösen habe
Die Gleichung lautet [mm] L* \ddot Q +R* \dot Q + \bruch{1}{c}*Q = U_0 * \cos(\omega t) [/mm]
Wenn man nun den Ansatz
[mm] Q(t)= \alpha*\cos(\omega t)+\beta*\sin(\omega t) [/mm] nutzt und auch die entsprechenden Ableitungen dieses Ansatzes
[mm] \dot Q [/mm] sowie [mm] \ddot Q [/mm], kommt man zu einem Term, der nach [mm] \cos [/mm] und [mm] \sin [/mm] - Termen geordnet so aussieht
[mm] ( - \alpha*\omega^2 *L +\beta *\omega *R +\bruch{\alpha}{C}) * \cos (\omega t) +( - \beta * \omega^2*L - \alpha * \omega *R + \bruch{\beta}{C}) * \sin(\omega t) = U_0 * \cos (\omega t) [/mm]
Nun soll man hier einen Koeffizientenvergleich durchführen, der ein lineares Gleichungssystem liefert für [mm] \alpha [/mm] und [mm] \beta [/mm]
Leider weiß ich aber nicht wie?
Ich habe mir mehrere Artikel zu Koeffizientenvergleichen durchgelesen aber leider hat mir das auch nicht geholfen.
Wie komme ich hier auf ein LGS?
Die Lösung wird dann so angegeben
[mm] ( \bruch{1}{\omega C} - \omega *L ) * \alpha + R* \beta = \bruch{U_0}{\omega} [/mm]
[mm] -R * \alpha + ( \bruch{1}{\omega C} - \omega * L ) * \beta = 0 [/mm]
[mm] \rightarrow \alpha = \bruch{(\bruch{1}{\omega C} - \omega L )}{R^2 + (\bruch{1}{\omega C} - \omega L )^2} \bruch{U_0}{\omega} = \bruch{1}{10} [/mm]
[mm] \rightarrow \beta = \bruch{R}{R^2 + (\bruch{1}{\omega C} - \omega L )^2} \bruch{U_0}{\omega} = \bruch{1}{5} [/mm]
Ich würde mich sehr über Hilfe freuen
Viele Grüße
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Hallo Nickles,
> Hallo ,
>
> ich habe eine lineare inhomogene Differentialgleichung 2ter
> Ordnung die ich durch einen Ansatz und dann einen
> Koeffizientenvergleich zu Lösen habe
>
> Die Gleichung lautet [mm]L* \ddot Q +R* \dot Q + \bruch{1}{c}*Q = U_0 * \cos(\omega t)[/mm]
>
> Wenn man nun den Ansatz
>
> [mm]Q(t)= \alpha*\cos(\omega t)+\beta*\sin(\omega t)[/mm] nutzt und
> auch die entsprechenden Ableitungen dieses Ansatzes
> [mm]\dot Q[/mm] sowie [mm]\ddot Q [/mm], kommt man zu einem Term, der nach
> [mm]\cos[/mm] und [mm]\sin[/mm] - Termen geordnet so aussieht
>
> [mm]( - \alpha*\omega^2 *L +\beta *\omega *R +\bruch{\alpha}{C}) * \cos (\omega t) +( - \beta * \omega^2*L - \alpha * \omega *R + \bruch{\beta}{C}) * \sin(\omega t) = U_0 * \cos (\omega t)[/mm]
>
>
>
> Nun soll man hier einen Koeffizientenvergleich
> durchführen, der ein lineares Gleichungssystem liefert
> für [mm]\alpha[/mm] und [mm]\beta[/mm]
>
>
>
> Leider weiß ich aber nicht wie?
Nun, vergleiche die Koeffizienten auf
beiden Seiten vor [mm]\cos\left(\omega t\right)[/mm] und [mm]\sin\left(\omega t\right)[/mm]
>
> Ich habe mir mehrere Artikel zu Koeffizientenvergleichen
> durchgelesen aber leider hat mir das auch nicht geholfen.
>
> Wie komme ich hier auf ein LGS?
>
> Die Lösung wird dann so angegeben
>
> [mm]( \bruch{1}{\omega C} - \omega *L ) * \alpha + R* \beta = \bruch{U_0}{\omega}[/mm]
>
> [mm]-R * \alpha + ( \bruch{1}{\omega C} - \omega * L ) * \beta = 0[/mm]
>
> [mm]\rightarrow \alpha = \bruch{(\bruch{1}{\omega C} - \omega L )}{R^2 + (\bruch{1}{\omega C} - \omega L )^2} \bruch{U_0}{\omega} = \bruch{1}{10}[/mm]
>
> [mm]\rightarrow \beta = \bruch{R}{R^2 + (\bruch{1}{\omega C} - \omega L )^2} \bruch{U_0}{\omega} = \bruch{1}{5}[/mm]
>
> Ich würde mich sehr über Hilfe freuen
>
> Viele Grüße
>
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
Gruß
MathePower
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 00:24 Mo 13.07.2009 | Autor: | Nickles |
Was ich auch gesehen habe ist, das man natürlich [mm] (- \alpha * \omega^2 * L + \beta * \omega * R + \bruch{\alpha}{C})* \cos (\omega t ) [/mm] mit [mm] U_0 * \cos (\omega t) [/mm] gleichsetzen könnte, sodass dann [mm] (- \alpha * \omega^2 * L + \beta * \omega * R + \bruch{\alpha}{C}) \rightarrow U_0 [/mm] entsprechen würde. Wenn man dann noch [mm] \omega [/mm] herauszieht und [mm] \alpha [/mm] davor wäre man bei dem Ergebnis das auch die Lösung angibt.
Aber kann man das so einfach?
Ist deshalb die 2te Zeile der angegebenen Lösung [mm] -R * \alpha + (\bruch{1}{\omega C} - \omega * L) * \beta = 0 [/mm] ? Da dies der [mm] \sin [/mm] - Term war?
Danke schonmal für deine Bemühungen bis hierher
|
|
|
|
|
Hallo Nickles,
> Was ich auch gesehen habe ist, das man natürlich [mm](- \alpha * \omega^2 * L + \beta * \omega * R + \bruch{\alpha}{C})* \cos (\omega t )[/mm]
> mit [mm]U_0 * \cos (\omega t)[/mm] gleichsetzen könnte, sodass dann
> [mm](- \alpha * \omega^2 * L + \beta * \omega * R + \bruch{\alpha}{C}) \rightarrow U_0[/mm]
> entsprechen würde. Wenn man dann noch [mm]\omega[/mm] herauszieht
> und [mm]\alpha[/mm] davor wäre man bei dem Ergebnis das auch die
> Lösung angibt.
> Aber kann man das so einfach?
Eine Gleichung kann man durch eine konstanten Faktor dividieren
(hier: [mm]\omega[/mm]). Dadurch wird nur die Gleichung verändert, nicht aber
die Aussage derselbigen.
> Ist deshalb die 2te Zeile der angegebenen Lösung [mm]-R * \alpha + (\bruch{1}{\omega C} - \omega * L) * \beta = 0[/mm]
> ? Da dies der [mm]\sin[/mm] - Term war?
So isses.
>
> Danke schonmal für deine Bemühungen bis hierher
Gruß
MathePower
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 15:29 Mo 13.07.2009 | Autor: | Nickles |
Danke sehr!
|
|
|
|
|
Aufgabe | Lösen des folgenden Linearen Gleichungssystems:
[mm]\left(\bruch{1}{\omega*C}-L*\omega\right) *b+R*a=\bruch{U_0}{\omega} }[/mm]
[mm]-R*b+\left(\bruch{1}{\omega*C}-L*\omega\right)*a=0 [/mm]
|
Guten Tag!
Ich beschäftige mich im Moment mit dergleichen Problemstellung. Beim Lösen der DGL habe ich ebenfalls dieses LGS erhalten, woraus ich die Koeffizienten bestimmen muss. Leider erhalte ich mit Derive 6 zwei sehr unüberschaubare Terme, an denen ich zweifelte. Nun sehe ich hier zwei Lösungen, von denen ich eher glaube, das diese korrekt sind. Ich sehe aber auch nicht, inwieweit diese eventuell sogar äquivalent zueinander sind:
> [mm]\rightarrow \alpha = \bruch{(\bruch{1}{\omega C} - \omega L )}{R^2 + (\bruch{1}{\omega C} - \omega L )^2} \bruch{U_0}{\omega} = \bruch{1}{10}[/mm]
>
> [mm]\rightarrow \beta = \bruch{R}{R^2 + (\bruch{1}{\omega C} - \omega L )^2} \bruch{U_0}{\omega} = \bruch{1}{5}[/mm]
[mm]a=\bruch{C^2*R*U_0*\omega}{c^2*\omega^2*(L^2*\omega^2+R^2)-2*C*L*\omega^2+1}[/mm]
[mm]b=\bruch{C*U_0*(1-C*L*\omega^2)}{c^2*\omega^2*(L^2*\omega^2+R^2)-2*C*L*\omega^2+1}[/mm]
Es wäre sehr nett, wenn mir jemand auf die Sprünge helfen könnte, wenn jemandem vielleicht mein Fehlüberlegung oder der Fehler in´s Auge springt.
Danke schonmal im Vorraus!
Liebe Grüße
Goldener Schnitt
|
|
|
|
|
> Lösen des folgenden Linearen Gleichungssystems:
> [mm]\left(\bruch{1}{\omega*C}-L*\omega\right) *b+R*a=\bruch{U_0}{\omega} }[/mm]
>
> [mm]-R*b+\left(\bruch{1}{\omega*C}-L*\omega\right)*a=0[/mm]
>
>
> Guten Tag!
> Ich beschäftige mich im Moment mit dergleichen
> Problemstellung. Beim Lösen der DGL habe ich ebenfalls
> dieses LGS erhalten, woraus ich die Koeffizienten bestimmen
> muss. Leider erhalte ich mit Derive 6 zwei sehr
> unüberschaubare Terme, an denen ich zweifelte. Nun sehe
> ich hier zwei Lösungen, von denen ich eher glaube, das
> diese korrekt sind. Ich sehe aber auch nicht, inwieweit
> diese eventuell sogar äquivalent zueinander sind:
> > [mm]\rightarrow \alpha = \bruch{(\bruch{1}{\omega C} - \omega L )}{R^2 + (\bruch{1}{\omega C} - \omega L )^2} \bruch{U_0}{\omega} = \bruch{1}{10}[/mm]
>
> >
> > [mm]\rightarrow \beta = \bruch{R}{R^2 + (\bruch{1}{\omega C} - \omega L )^2} \bruch{U_0}{\omega} = \bruch{1}{5}[/mm]
wenn du die [mm] \beta [/mm] gleichung nimmst, das binom auflöst, zähler und nenner jeweils mit [mm] w*C^2 [/mm] erweiterst und dann im nenner [mm] c^2*w^2 [/mm] ausklammerst, erhälst du deine untere a-formel!
die [mm] \alpha [/mm] gleichung entsprechend wie oben, nur mit [mm] c^2*w^2 [/mm] erweitern und ausklammern, dann erhälst du gleichung b
>
>
> [mm]a=\bruch{C^2*R*U_0*\omega}{c^2*\omega^2*(L^2*\omega^2+R^2)-2*C*L*\omega^2+1}[/mm]
>
> [mm]b=\bruch{C*U_0*(1-C*L*\omega^2)}{c^2*\omega^2*(L^2*\omega^2+R^2)-2*C*L*\omega^2+1}[/mm]
>
> Es wäre sehr nett, wenn mir jemand auf die Sprünge helfen
> könnte, wenn jemandem vielleicht mein Fehlüberlegung oder
> der Fehler in´s Auge springt.
>
> Danke schonmal im Vorraus!
>
>
> Liebe Grüße
>
> Goldener Schnitt
>
>
>
>
>
|
|
|
|
|
Hallo fencheltee!
...danke für deine Antwort; auch, wenn es über einen Monat zu spät kommt. Das lag darin begründet, dass ich viel unterwegs war und dort meine mathematischen Anliegen etwas an Priorität eingebüsst hatten.
Naja manchmal sieht man so etwas einfach nicht...
In jedem Fall ist es mir nun klar.
Danke nochmal, wird nächstes mal vieeel eher kommen, versprochen.
Grüße
Goldener Schnitt
|
|
|
|