www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra Sonstiges" - Körper
Körper < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Körper: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 10:59 Do 06.11.2008
Autor: Janine1506

Aufgabe
Wir betrachten die Menge
K = { a + b [mm] \wurzel [/mm] {2}  |a,b [mm] \in \IQ [/mm] } Teilmenge von [mm] \IR [/mm]

Es bezeichne + die Summe und * das übliche Produkt reeler Zahlen.
Zeigen Sie, dass (K, + , * ) ein Körper ist.

Mir ist bewusst, dass ich zeigen muss, dass es 2 abelsche Gruppen gibt.
(1) (K, +)
(2) ( K \ {0}, *)
außerdem gilt das Distributivgesetz.
Sowie das a+b [mm] \wurzel [/mm] {2} ein neutrales und inverses Element ist.

aber wie zeige ich diese Sachen???
Ich weiß absolut nicht weiter


        
Bezug
Körper: Antwort
Status: (Antwort) fertig Status 
Datum: 11:11 Do 06.11.2008
Autor: angela.h.b.

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

> Wir betrachten die Menge
>  K = { a + b [mm]\wurzel[/mm] {2}  |a,b [mm]\in \IQ[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

} Teilmenge von [mm]\IR[/mm]

>  
> Es bezeichne + die Summe und * das übliche Produkt reeler
> Zahlen.
>  Zeigen Sie, dass (K, + , * ) ein Körper ist.
>  
> Mir ist bewusst, dass ich zeigen muss, dass es 2 abelsche
> Gruppen gibt.
>   (1) (K, +)
>   (2) ( K \ {0}, *)
>  außerdem gilt das Distributivgesetz.


Hallo,

ja.

Beachte dabei, daß Du es mit einer Teilmenge des [mm] \IR [/mm] zu tun hast und den entsprechenden Verknüpfungen. daß [mm] \IR [/mm] ein Körper ist, weißt Du.

Du mußt also bloß zeigen, daß

>   (1) (K, +)
>   (2) ( K \ {0}, *)

Untergruppen von [mm] (\IR,+) [/mm] und [mm] (\IR [/mm] \ [mm] \{0\} [/mm] , [mm] \*) [/mm]  sind. dazu stehen Dir bestimmt Untergruppenkriterien zur Verfügung. Welche?

Wie lauten sie, wenn Du sie auf

>   (1) (K, +)
>   (2) ( K \ {0}, *)

überträgst?

(Die Gültikeit des Distributivgesetzes steht außer Frage, weil es ja in [mm] \IR [/mm] gilt.)

Wenn wir das hier vor Augen haben, kann man überlegen, wie man's machen kann.

(Für die Abgschlossenheit von K unter + mußt Du z.B. zeigen, daß bei Addition zweier Elemente der gegebenen Machart wieder so eins herauskommt.)

gruß v. Angela



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de