www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gruppe, Ring, Körper" - Körper
Körper < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Körper: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:38 Mo 05.04.2010
Autor: andi7987

Aufgabe
Es sei K ein Körper mit der Addition +, der Multiplikation *, dem Einselement e und dem Nullelement 0. Zeigen Sie, dass man sich den Verknüpfungen a [mm] \oplus [/mm] b= a + b + e und a [mm] \otimes [/mm] b = a+ b + a * b, wieder einen Körper* erhält!  

Ich weiß, dass es hier diese 9 Regeln des Körpers gibt und man diese darauf anwenden muss.

Aber wie funktioniert das genau?

        
Bezug
Körper: Antwort
Status: (Antwort) fertig Status 
Datum: 11:25 Mo 05.04.2010
Autor: angela.h.b.


> Es sei K ein Körper mit der Addition +, der Multiplikation
> *, dem Einselement e und dem Nullelement 0. Zeigen Sie,
> dass man sich den Verknüpfungen a [mm]\oplus[/mm] b= a + b + e und
> a [mm]\otimes[/mm] b = a+ b + a * b, wieder einen Körper* erhält!
> Ich weiß, dass es hier diese 9 Regeln des Körpers gibt
> und man diese darauf anwenden muss.
>  
> Aber wie funktioniert das genau?

Hallo,

es geht jetzt also darum, ob die Menge K zusammen mit den beiden neuen Verknüpfungen auch ein Körper ist.
Ersetze in den Körperaxiomen überall + durch [mm] \oplus [/mm] und * durch [mm] \otimes [/mm] und zeige dann die Gültigkeit der Axiome.

Ich mache Dir mal eins vor:

zu zeigen ist u.a. die Kommutativität der Addition, daß also für alle [mm] a,b\in [/mm] K gilt: [mm] a\oplus [/mm] b= [mm] b\oplos [/mm] a.

Bew.: Seien [mm] a,b\in [/mm] K.

Es ist

[mm] a\oplus [/mm] b= a+b+e [mm] \qquad [/mm] nach Def.  [mm] \oplus. [/mm]

= b+a + e [mm] \qquad [/mm] (Kommutativität der Addition in (K,+,*))

[mm] =b\oplus [/mm] a [mm] \qquad [/mm] nach Def. von [mm] \oplus [/mm]

In dem Stile sind die ganzen anderen Axiome auch zu erledigen.

Gruß v. Angela




Bezug
                
Bezug
Körper: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 11:29 Mo 05.04.2010
Autor: andi7987

Mmh, ja scheint einfach zu sein!

Aber ganz klar ist mir das nicht bzw. wieso das so geht! :-(

Einfach umdrehen!?

Bezug
                        
Bezug
Körper: Antwort
Status: (Antwort) fertig Status 
Datum: 11:36 Mo 05.04.2010
Autor: angela.h.b.


> Mmh, ja scheint einfach zu sein!
>  
> Aber ganz klar ist mir das nicht bzw. wieso das so geht!
> :-(
>  
> Einfach umdrehen!?

Hallo,

stell Deine Frage bitte präziser.

Ich weiß jetzt gar nicht, worauf genau Du Dich beziehst...

Ich habe Dir bei den durchgeführten Rechnemanövern doch jeweils die Begründung dazugeschrieben (und für eine Hausübung oder Klausur mußt Du das auch tun).

Gruß v. Angela


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de