www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Algebra" - Körper Axiome
Körper Axiome < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Körper Axiome: Redundanz der Distributivität?
Status: (Frage) beantwortet Status 
Datum: 13:45 Do 23.10.2008
Autor: Beltrami

Aufgabe
Sei K ein Körper kann man
a*0=0 f.a. a [mm] \in [/mm] K
ohne Verwendung des Distributiviätsaxiom beweisen

Mein Problem ist jetzt nicht speziell diese ufgabe meine Frage ist allgemeiner.
Ich hab grad ein Aufgabenblatt gesehen wo man die Distributivität aus den Körperaxiomen beweisen muss. In allem was ich bisher gefunden habe in der Literatur und an was ich mich erinner is die D. aber ein Axiom.
Also ist D wirklich redundant oder gibt es ein Axiom was noch verwendet wird anstatt der D.
Danke für die Hilfe
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Körper Axiome: Antwort
Status: (Antwort) fertig Status 
Datum: 20:19 Fr 24.10.2008
Autor: Fry

Hallo,

das Distributivgesetz ist auf jeden Fall ein Axiom, das sich nicht aus den anderen ergibt,schließlich regelt es, wie bei der Verknüpfung von den Opertationen "*" und "+" verfahren werden soll.
Die anderen Gesetze beziehen sich immer nur auf eine Operation.

In Bezug auf die Aufgabe kann man vielleicht die Nullteilerfreiheit in Körpern für den Beweis heranziehen. Es gilt nämlich:
Für alle [mm] a,b\in [/mm] K gilt: a*b=0 [mm] \Rightarrow [/mm] a=0 oder b=0
Daraus folgt direkt: 0*a=0=a*0. Allerdings wird bei dem Beweis glaub ich auch die Distributivgesetze angewendet....

Gruß
Christian



Bezug
                
Bezug
Körper Axiome: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:37 Fr 24.10.2008
Autor: felixf

Hallo

> das Distributivgesetz ist auf jeden Fall ein Axiom, das
> sich nicht aus den anderen ergibt,

Nun, das haengt nicht zuletzt von den anderen Axiomen ab. Es gibt nicht die Koerperaxiome. Normalerweise ist es aber schon so, dass das Distributivgesetz das einzige Axiom ist, welches beide Operationen umfasst.

> schließlich regelt es,
> wie bei der Verknüpfung von den Opertationen "*" und "+"
> verfahren werden soll.
>  Die anderen Gesetze beziehen sich immer nur auf eine
> Operation.

Genau.

Und es ist leicht ein Gegenbeispiel zu konstruieren, wo man zwei Verknuepfungen auf einer Menge hat die alle Koerperaxiome (die man meistens so hat) erfuellen und welche das Distributivgesetz explizit verletzen.

Es reicht ja schon aus, bei einer endlichen additiven Gruppe die multiplikative Gruppe so zu waehlen, dass sie nicht zyklisch ist. (Wenn das Ergebnis ein Koerper waer, muesste sie es naemlich sein.) Dies ist bereits fuer eine fuenfelementige Menge moeglich.

> In Bezug auf die Aufgabe kann man vielleicht die
> Nullteilerfreiheit in Körpern für den Beweis heranziehen.
>
> Es gilt nämlich:
>  Für alle [mm]a,b\in[/mm] K gilt: a*b=0 [mm]\Rightarrow[/mm] a=0 oder b=0
>
>  Daraus folgt direkt: 0*a=0=a*0.

Wieso das? Das ist doch eher die andere Richtung.

> Allerdings wird bei dem
> Beweis glaub ich auch die Distributivgesetze
> angewendet....

LG Felix



Bezug
        
Bezug
Körper Axiome: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:14 Fr 24.10.2008
Autor: Marcel

Hallo,

hast Du das Aufgabenblatt bzw. die zugrundeliegenden Axiome mal zur Hand bzw. kannst die angeben oder das Blatt verlinken?

Wenn die Distributivität nicht als Axiom vorkam, gab' es dafür sicher (ein oder mehrere) andere(s) Axiom(e).

Was sicher öfter gemacht wird, ist, dass man im Körper nur die Linksdistributivität als Axiom festlegt und dann in einer Aufgabe zeigen soll, dass der Körper auch rechtsdistributiv ist. (Falls die Begriffe unklar sind, siehe []hier.)

(Bzw. meinetwegen auch mit vertauschten Rollen von Links- und Rechtsdistributivität.)

Das macht man dann, indem man $(a+b)*c=c*(a+b)$ schreibt (Kommutativität der Multiplikation) und dann die Linksdistributivität ausnutzt und danach dann die Kommutativität der Multiplikation anwendet.

Was ich gerade z.B. auch sehe, dass in dem Buch "Höhere Mathematik für Ingenieure und Physiker" von Klaus Habetha bei den Körperaxiomen gar nicht die Existenz eines Inversen [mm] $a^{-1}$ [/mm] für $a [mm] \not=0_K$ [/mm] gefordert wird, sondern als Axiom steht dafür dann da, dass die Gleichung $a*x=b$ (für $a [mm] \not=0_K$) [/mm] stets genau eine Lösung $x$, als Element des Körpers, haben soll (für jedes $b$ aus dem Körper).
Daraus läßt sich natürlich insbesondere die Existenz eines inversen Elements [mm] $a^{-1}$ [/mm] für $a [mm] \not=0_K$ [/mm] folgern. Aber die Körperaxiome selbst "erscheinen auf den ersten Blick" ein wenig anders als gewohnt...

Gruß,
Marcel

Bezug
                
Bezug
Körper Axiome: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:40 Do 30.10.2008
Autor: Beltrami

Hat sich alles geklaert. Das Problem war wie mein Vorredner vermutet hat. Ich hatte die Voresung nicht da so dass ich nicht sehen konnte, dass dort nur die Linksdistributivitaet als axiom gefordert wurde. Aber danke an euch alle fuer die Antworten.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de