www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gruppe, Ring, Körper" - Körperaxiome
Körperaxiome < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Körperaxiome: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:57 Mo 07.05.2007
Autor: Zerwas

Aufgabe
Seinen x,y,z Zahlen in einem Körper. Man zeige mit den Körperaxiomen:
[mm] (1)\bruch{1}{x}+\bruch{1}{y}=\bruch{x+y}{x*y} [/mm]
[mm] (2)\bruch{x}{y}*\bruch{y}{z}*\bruch{z}{x}=1 [/mm]

Zu(1):
Wie soll ich das Beweisen? Eigentlich handelt es sich ja hier um einfache Erweiteung eines Bruchs. Also:
[mm] \bruch{1}{x}+\bruch{1}{y}=\bruch{1}{x}*\bruch{y}{y}+\bruch{1}{y}*\bruch{x}{x}=\bruch{y}{xy}+\bruch{x}{yx}=\bruch{y}{xy}+\bruch{x}{xy}=\bruch{x+y}{xy}. [/mm]
Geht das so oder benutze ich hier mehr als die Axiome? Bzw muss ich Zwischenschritte extra beweisen und wenn ja welche?

Zu(2):
Hier habe ich den Term einfach umgeschrieben, da gilt: [mm] x^{-1}=\bruch{1}{x}. [/mm] Also:
[mm] \bruch{x}{y}*\bruch{y}{z}*\bruch{z}{x}=x*y^{-1}*y*z^{-1}*z*x^{-1}=x*x^{-1}*y*y^{-1}*z*z^{-1}=1*1*1=1. [/mm]
Geht das so?

Über Korrektur und Hinweise dazu ob ich zu "schnell" war wäre ich dankbar.

Ich habe diese Frage auf keinem anderen Forum auf anderen Internetseiten gestellt.

        
Bezug
Körperaxiome: Antwort
Status: (Antwort) fertig Status 
Datum: 13:06 Mo 07.05.2007
Autor: felixf

Hallo Zerwas!

> Seinen x,y,z Zahlen in einem Körper. Man zeige mit den
> Körperaxiomen:
>  [mm](1)\bruch{1}{x}+\bruch{1}{y}=\bruch{x+y}{x*y}[/mm]
>  [mm](2)\bruch{x}{y}*\bruch{y}{z}*\bruch{z}{x}=1[/mm]
>  Zu(1):
>  Wie soll ich das Beweisen? Eigentlich handelt es sich ja
> hier um einfache Erweiteung eines Bruchs.

Du sollst hier zeigen, dass man das ``einfach so'' machen darf. Ihr habt wahrscheinlich [mm] $\frac{x}{y} [/mm] := x [mm] y^{-1}$ [/mm] definiert, oder? Also musst du zeigen, dass $1 [mm] \cdot x^{-1} [/mm] + 1 [mm] \cdot y^{-1} [/mm] = (x + y) [mm] \cdot [/mm] (x [mm] y)^{-1}$ [/mm] ist, und dass $x [mm] y^{-1} \cdot [/mm] y [mm] z^{-1} \cdot [/mm] z [mm] x^{-1} [/mm] = 1$ ist.

Du musst hier genau aufpassen, welche Axiome du anwendest (also etwa $(x [mm] y)^{-1} [/mm] = [mm] x^{-1} y^{-1}$ [/mm] musst du evtl. erst auch noch beweisen, bevor du es verwendest).

LG Felix


Bezug
                
Bezug
Körperaxiome: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:48 Mo 07.05.2007
Autor: Zerwas

und genau da liegt mein problem ... wie kann ich zeigen, dass [mm] (xy)^{-1}=x^{-1}*y^{-1}??? [/mm] :-[

Bezug
                        
Bezug
Körperaxiome: Antwort
Status: (Antwort) fertig Status 
Datum: 14:05 Mo 07.05.2007
Autor: felixf

Hi Zerwas,

> und genau da liegt mein problem ... wie kann ich zeigen,
> dass [mm](xy)^{-1}=x^{-1}*y^{-1}???[/mm] :-[

also $(x [mm] y)^{-1}$ [/mm] ist ja das eindeutig bestimmte Element $z [mm] \in [/mm] K$ mit $z (x y) = 1$. Damit also $(x [mm] y)^{-1} [/mm] = [mm] x^{-1} y^{-1}$ [/mm] ist, musst du nachrechnen, dass [mm] $(x^{-1} y^{-1}) [/mm] (x y) = 1$ ist.

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de