www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gruppe, Ring, Körper" - Körperaxiome
Körperaxiome < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Körperaxiome: Beweis von Körperaxiomen
Status: (Frage) beantwortet Status 
Datum: 20:37 Mi 07.11.2012
Autor: iced

Aufgabe
Es sei n eine natürliche Zahl. Arithmetik modulo n auf der Menge [mm] \IF_{n} [/mm] = {0, ... , n-1} wird wie folgt definiert: Addiere oder multipliziere wie gewohnt, dann subtrahiere das größtmögliche Vielfache von n, so dass das Ergebnis in [mm] \IF_{n} [/mm] liegt.

(a) Zeigen Sie, dass [mm] \IF_{3} [/mm] ein Körper unter Arithmetik modulo 3 ist, und dass [mm] \IF_{3} [/mm] sich nicht zu einem geordneten Körper machen läßt.

Hallo zusammen!

Die obige Aufgabe habe ich bereits teilweise gelöst und bräuchte noch klein wenig Hilfe bei dem Rest. Gelöst habe ich bereits:

Um zu zeigen, dass [mm] \IF_{3} [/mm] ein Körper modulo 3 ist, müssen die Axiome (A1)-(A9) gelten. Diese sind:

(A1) Assoziativgesetz der Addition
(A2) Kommutativgesetz der Addition (gezeigt)
(A3) Existenz der additiven Identität (gezeigt)
(A4) Existenz additiver Inverser (gezeigt)
(A5) Assoziativgesetz der Multiplikation
(A6) Kommutativgesetz der Multiplikation (gezeigt)
(A7) Existenz der multiplikativen Identität (gezeigt)
(A8) Existenz multiplikativer Inverser (gezeigt)
(A9) Distributivgesetz

Es müssen also noch die Axiome (A1), (A5) und (A9) gezeigt werden. Dass [mm] \IF_{3} [/mm] sich nicht zu einem geordneten Körper machen lässt ist auch bereits bewiesen, da die Monotoniegesetze verletzt werden.

Könnt ihr mir helfen auch noch die letzten 3 Axiome zu beweisen?

Viele Grüße
Pascal

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Körperaxiome: Antwort
Status: (Antwort) fertig Status 
Datum: 08:52 Do 08.11.2012
Autor: schachuzipus

Hallo Pascal,


> Es sei n eine natürliche Zahl. Arithmetik modulo n auf der
> Menge [mm]\IF_{n}[/mm] = {0, ... , n-1} wird wie folgt definiert:
> Addiere oder multipliziere wie gewohnt, dann subtrahiere
> das größtmögliche Vielfache von n, so dass das Ergebnis
> in [mm]\IF_{n}[/mm] liegt.
>  
> (a) Zeigen Sie, dass [mm]\IF_{3}[/mm] ein Körper unter Arithmetik
> modulo 3 ist, und dass [mm]\IF_{3}[/mm] sich nicht zu einem
> geordneten Körper machen läßt.
>  Hallo zusammen!
>  
> Die obige Aufgabe habe ich bereits teilweise gelöst und
> bräuchte noch klein wenig Hilfe bei dem Rest. Gelöst habe
> ich bereits:
>  
> Um zu zeigen, dass [mm]\IF_{3}[/mm] ein Körper modulo 3 ist,
> müssen die Axiome (A1)-(A9) gelten. Diese sind:
>  
> (A1) Assoziativgesetz der Addition
>  (A2) Kommutativgesetz der Addition (gezeigt)
>  (A3) Existenz der additiven Identität (gezeigt)
>  (A4) Existenz additiver Inverser (gezeigt)
>  (A5) Assoziativgesetz der Multiplikation
>  (A6) Kommutativgesetz der Multiplikation (gezeigt)
>  (A7) Existenz der multiplikativen Identität (gezeigt)
>  (A8) Existenz multiplikativer Inverser (gezeigt)
>  (A9) Distributivgesetz
>  
> Es müssen also noch die Axiome (A1), (A5) und (A9) gezeigt
> werden. Dass [mm]\IF_{3}[/mm] sich nicht zu einem geordneten Körper
> machen lässt ist auch bereits bewiesen, da die
> Monotoniegesetze verletzt werden.
>  
> Könnt ihr mir helfen auch noch die letzten 3 Axiome zu
> beweisen?

Das bekommst du selber hin.

Rechne es einfach für alle Tripel von Elementen aus [mm] $F_3$ [/mm] explizit nach (oder vor). Soviele Kombinationsmöglichkeiten gibt es ja nicht und wegen der Kommutativität von Addition und Multiplikation sparst du auch was ein ...

Einfach systematisch die Fälle durchgehen ...

>  
> Viele Grüße
>  Pascal
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.

Gruß

schachuzipus


Bezug
                
Bezug
Körperaxiome: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:53 Do 08.11.2012
Autor: iced

Hallo schachuzipus,

danke schonmal für deine Antwort. Das man das durchkombinieren kann ist mir klar, aber das sind immerhin 27 Möglichkeiten. Meine Frage war eher, ob man das nicht allgemeiner zeigen kann?

Viele Grüße
Pascal

Bezug
                        
Bezug
Körperaxiome: Antwort
Status: (Antwort) fertig Status 
Datum: 18:04 Do 08.11.2012
Autor: wieschoo

Ich zitiere:

> Soviele Kombinationsmöglichkeiten gibt es ja nicht und wegen der
> Kommutativität von Addition und Multiplikation sparst du auch was ein

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de