www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Algebra" - Körpererweiterung
Körpererweiterung < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Körpererweiterung: Idee
Status: (Frage) beantwortet Status 
Datum: 19:43 Di 19.06.2012
Autor: teo

Aufgabe
Sei k [mm] \subset [/mm] K eine Körpererweiterung und 0 [mm] \neq \alpha \in [/mm] K mit K = [mm] k[\alpha]. [/mm] Weiter sei eine Potenz [mm] \alpha^e [/mm] (e eine positive ganze Zahl) von [mm] \alpha [/mm] in k enthalten. Sei n die minimale positive ganze Zahl, so dass [mm] \alpha^n \in [/mm] k ist. Zeigen Sie:

a) Ist [mm] \alpha^m \in [/mm] k für ein m > 0, so ist m ein Vielfaches von n.

b) Ist K/k eine separable Erweiterung, so ist die Charakteristik von k kein Teiler von n.


Hallo,

leider tue ich mich bei dieser Aufgabe ziemlich schwer. Vlt. hat ja jemand eine Idee.

zur a) Irgendwie ist mir das schon klar, wenn ich mir das an einem Beispiel anschaue:

[mm] \alpha [/mm] = [mm] \wurzel[3]{2}. [/mm] Dann ist [mm] \IQ \subset \IQ[\wurzel[3]{2}] [/mm] eine solche Körpererweiterung und für n=3 gilt [mm] (\wurzel[3]{2})^3 \in \IQ [/mm] und nur für Vielfache m von n ist [mm] (\wurzel[3]{2})^m \in \IQ. [/mm] Nur wie ich das allgemein beweisen kann weiß ich überhaupt nicht.

b) hier ist zumindest klar dass man den Fall char(k)= 0 schnell abgeschlossen hat. Aber für char(k)= p mit p prim habe ich keine Ahnung..

Vielen Dank

Grüße

teo

        
Bezug
Körpererweiterung: Antwort
Status: (Antwort) fertig Status 
Datum: 23:44 Di 19.06.2012
Autor: SEcki


> zur a) Irgendwie ist mir das schon klar, wenn ich mir das
> an einem Beispiel anschaue:
>
> [mm]\alpha[/mm] = [mm]\wurzel[3]{2}.[/mm] Dann ist [mm]\IQ \subset \IQ[\wurzel[3]{2}][/mm]
> eine solche Körpererweiterung und für n=3 gilt
> [mm](\wurzel[3]{2})^3 \in \IQ[/mm] und nur für Vielfache m von n
> ist [mm](\wurzel[3]{2})^m \in \IQ.[/mm] Nur wie ich das allgemein
> beweisen kann weiß ich überhaupt nicht.

Teilen mit Rest, dann Widerspruch.

> b) hier ist zumindest klar dass man den Fall char(k)= 0
> schnell abgeschlossen hat. Aber für char(k)= p mit p prim
> habe ich keine Ahnung..

[m]x\mapsto x^p[/m] ist ein Körperhomomorphismus. Bringe das mit seperabler Erweiterung in Verbindung.

SEcki

Bezug
                
Bezug
Körpererweiterung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:55 Mi 20.06.2012
Autor: teo

haklo, danke für die antwort. teil a) habe ich soweit hinbekommen. bei teil b) komme ich nicht weiter stimmt es, dass wenn K|k separabel ist die erweiterung galoissch und x [mm] \to x^p [/mm] die galoisgruppe erzeugt.. aber ich sehe nicht wie ich p teilt nicht n unterbringen soll?
danke für die hilfe!

Bezug
                        
Bezug
Körpererweiterung: Antwort
Status: (Antwort) fertig Status 
Datum: 14:57 Mi 20.06.2012
Autor: felixf

Moin!

> haklo, danke für die antwort. teil a) habe ich soweit
> hinbekommen. bei teil b) komme ich nicht weiter stimmt es,
> dass wenn K|k separabel ist die erweiterung galoissch und x
> [mm]\to x^p[/mm] die galoisgruppe erzeugt..

Nein, das stimmt nicht. Erstens haelt $x [mm] \mapsto x^p$ [/mm] im allg. nicht $k$ fest. Und zweitens ist $K|k$ genau dann galoissch, wenn $k$ die $n$-ten Einheitswurzeln enthaelt.

> aber ich sehe nicht wie
> ich p teilt nicht n unterbringen soll?
> danke für die hilfe!

Das Minimalpolynom von [mm] $\alpha$ [/mm] ueber $k$ ist ein Teiler von [mm] $X^n [/mm] - [mm] \alpha^n \in [/mm] k[X]$. Die Erweiterung $K|k$ ist genau dann separabel, wenn das Minimalpolynom quadratfrei ist.

Sei $L$ ein Zerfaellungskoerper von [mm] $X^n [/mm] - [mm] \beta$ [/mm] mit [mm] $\beta [/mm] := [mm] \alpha^n$ [/mm] ueber $K$. Angenommen $p [mm] \mid [/mm] n$. Zeige, dass [mm] $X^n [/mm] - [mm] \beta$ [/mm] dann nur (mind.) $p$-fache Nullstellen hat.

(Genauer: sei [mm] $p^k$ [/mm] die hoechste Potenz von $p$ mit [mm] $p^k \mid [/mm] n$. Dann hat [mm] $X^n [/mm] - [mm] \beta$ [/mm] genau [mm] $\frac{n}{p^k}$ [/mm] Nullstellen, die alle die Vielfachheit [mm] $p^k$ [/mm] haben. Du kannst die sogar explizit hinschreiben, falls du dir eine [mm] $\frac{n}{p^k}$-te [/mm] Einheitswurzel nimmst. Eine solche muss es in $L$ geben.)

Hierueber kannst du jetzt vielleicht eine Aussage ueber das Minimalpolynom von [mm] $\alpha$ [/mm] ueber $k$ machen.

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de