www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gruppe, Ring, Körper" - Körperkonstruktion
Körperkonstruktion < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Körperkonstruktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:44 So 01.07.2007
Autor: biler

Hallo Forumsmitglieder, Ich bin neu hier und hoffe, dass ich nichts falsch mache. Ich bin an Mathematikinteressierter Laie und habe einige Fragen, die sicher viele beantworten können.
Es geht darum: Kann in einem unendlichen Körper Folgendes gelten: e(m)*e(m)=e(a) Mit e(m) meine ich das neutrale Element der Addition, mit e(a) das neutrale Element der Addition. Wenn ja, gibt es einen bekannten Körper, der diese Bedingungen erfüllt.
Vielen Dank im Voraus
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Körperkonstruktion: Antwort
Status: (Antwort) fertig Status 
Datum: 21:01 So 01.07.2007
Autor: felixf

Hallo!

> Hallo Forumsmitglieder, Ich bin neu hier und hoffe, dass
> ich nichts falsch mache. Ich bin an
> Mathematikinteressierter Laie und habe einige Fragen, die
> sicher viele beantworten können.

Zuerst einmal: [willkommenmr]

>  Es geht darum: Kann in einem unendlichen Körper Folgendes
> gelten: e(m)*e(m)=e(a) Mit e(m) meine ich das neutrale
> Element der Addition,

Du meinst hier wohl `neutrales Element der Multiplikation', oder? :)

> mit e(a) das neutrale Element der
> Addition. Wenn ja, gibt es einen bekannten Körper, der
> diese Bedingungen erfüllt.

Die Gleichung $e(m) * e(m) = e(a)$ kann in keinem Koerper gelten, da per Definition $(K [mm] \setminus \{ e(a) \}, \cdot)$ [/mm] eine Gruppe ist und $e(m) [mm] \neq [/mm] e(a)$ ist: da Gruppen bzgl. der Operation abgeschlossen ist, folgt aus $e(m) [mm] \in [/mm] K [mm] \setminus \{ e(a) \}$, [/mm] das $e(m) [mm] \cdot [/mm] e(m) [mm] \neq [/mm] e(a)$ ist.

Dies gilt fuer beliebige Koerper, also insbesondere auch fuer unendliche Koerper.

LG Felix


Bezug
                
Bezug
Körperkonstruktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:21 So 01.07.2007
Autor: biler

Hallo felixf,
danke für die schnelle Antwort.
Leider sind mir trotz Mühe zwei Fehler unterlaufen: Du hast recht mit e(m) meine ich das neutrale Elment der Multiplikation und die korrigierte Gleichung lautet: e(m)+e(m) = e(a). Kann also e(m) bezüglich der Addition invers zu sich sein?
Noch einmal Danke für deine Mühe
biler

Bezug
                        
Bezug
Körperkonstruktion: Antwort
Status: (Antwort) fertig Status 
Datum: 21:59 So 01.07.2007
Autor: felixf

Hallo biler!

>  danke für die schnelle Antwort.
> Leider sind mir trotz Mühe zwei Fehler unterlaufen: Du hast
> recht mit e(m) meine ich das neutrale Elment der
> Multiplikation und die korrigierte Gleichung lautet:
> e(m)+e(m) = e(a). Kann also e(m) bezüglich der Addition
> invers zu sich sein?

Ja, das kann passieren! Und zwar genau dann, wenn der Koerper von Charakteristik 2 ist.

Ein Beispiel: Ist $K$ der Koerper mit 2 Elementen, so nimm $L = K(x) = [mm] \{ \frac{f}{g} \mid f, g \in K[x], \; g \neq 0 \}$ [/mm] den Koerper der rationalen Funktionen mit Koeffizienten in $K$. (Wenn du $K[x]$ nicht kennst: das ist der Ring der Polynome in einer Unbestimmten mit Koeffizienten in $K$; und $K(x)$ ist der Quotientenkoerper von $K[x]$.)

Dieser Koerper $L$ hat unendlich viele Elemente und enthaelt als Teilkoerper $K$. Und da in $K$ die Gleichung $1 + 1 = 0$ gilt, gilt sie auch in $L$.

(Normalerweise schreibt man $0$ anstelle $e(a)$ und $1$ anstelle $e(m)$, ganz egal um welchen Koerper oder Ring es gerade geht.)

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de