www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "mathematische Statistik" - Kolmogorov-Smirnov-Test
Kolmogorov-Smirnov-Test < math. Statistik < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "mathematische Statistik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kolmogorov-Smirnov-Test: kritische Werte (exakt, appr.)
Status: (Frage) überfällig Status 
Datum: 16:59 Di 10.07.2012
Autor: dennis2

Aufgabe
Vergleiche die exakten kritischen Werte des zweiseitigen Kolmogorov-Smirnov-Tests für [mm] $\alpha=0,05$ [/mm] mit den approximativen Werten, die sich über die asymptotische Verteilung ergeben und zwar für $m=10, n=15$ und $m=15, n=20$.


[mm] \textit{Hallo, liebe Leute!} [/mm]

Ist es ausreichend, wenn ich Euch zunächst lediglich meine Ergebnisse gebe? Falls diese schon stimmen, erspare ich mir viel Schreibarbeit und Euch viel Lesearbeit. :-)


Also für $m=10, n=15$ habe ich als [mm] \textbf{exakten} [/mm] kritischen Wert [mm] $c_{ex}=1/2$ [/mm] heraus und als [mm] \textbf{approximativen} [/mm] kritischen Wert [mm] $c_{app}=0,56$. [/mm]

Für $m=15, n=20$ habe ich [mm] $c_{ex}=13/30$ [/mm] und [mm] $x_{app}0,46$. [/mm]


Viele Grüße!

Dennis

        
Bezug
Kolmogorov-Smirnov-Test: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 18:29 Di 10.07.2012
Autor: dennis2

Ich habe die kritischen Werte berechnet, indem ich mich an folgender asymptotischen Verteilung der Kolmogrov-Smirnov-Teststatistik [mm] $K_{m,n}$ [/mm]  orientiert habe (so zum Beispiel zu finden in Büning/ Trenkler):

[mm] $\lim\limits_{m,n\to\infty}P\left(K_{m,n}\leq \lambda/\sqrt{N'}\right)=Q_1(\lambda)$ [/mm] mit

[mm] $Q_1(\lambda)=1-2\sum\limits_{k=1}^{\infty}(-1)^{k-1}e^{-2k^2\lambda^2}$ [/mm] und

$N'=mn/(m+n)$


-------

In der Vorlesung hatten wir nach meiner Mitschrift:

[mm] $\lim\limits_{m,n\to\infty}P\left(\frac{d}{\sqrt{mn}\sqrt{m+n}}K_{m,n}<\lambda\right)=1-2\sum\limits_{k=1}^{\infty}(-1)^{k-1}\exp\left(-2k^2\lambda^2\right)$, [/mm] wobei d der größte gemeinsame Teiler von m und n sein soll.


Irgendwie sehe ich nicht, dass das identisch ist.

Das [mm] $\frac{d}{\sqrt{mn}\sqrt{m+n}}$ [/mm] irritiert mich. Wenn ich das umforme, habe ich doch die Wahrscheinlichkeit von

[mm] $K_{m,n}<\frac{\lambda\sqrt{mn}\sqrt{m+n}}{d}$, [/mm] aber das ist doch nicht das Gleiche wie die Wahrscheinlichkeit von [mm] $K_{m,n}\leq\lambda/\sqrt{N'}$ [/mm] - oder vielleicht doch?!



Bezug
                
Bezug
Kolmogorov-Smirnov-Test: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:20 Do 12.07.2012
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
        
Bezug
Kolmogorov-Smirnov-Test: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:20 Do 12.07.2012
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "mathematische Statistik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de