www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Stochastik" - Kolmogorow
Kolmogorow < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kolmogorow: Beweis
Status: (Frage) beantwortet Status 
Datum: 18:09 Di 29.11.2005
Autor: Bina02

Ich habe diese Frage in keinem anderen Forum gestellt!


Hallo ihr Lieben!

Ich sitze immer noch an meiner Stochastik Hausaufgabe und zerbreche mir grade den Kopf über eine Aufgabe, in der es wiedermal um einen Beweise geht.
Die Aufgabe lautet dabei zunächst wie folgt:

Beweisen Sie: Wenn bei Wahrscheinlichkeit nach der Definition von Kolmogorow A und B unabhängig ist, dann ist auch A von /overline{B} unabhängig (P(/overline{B}) [mm] \not= [/mm] 0)


Das Axiomsystem von Kolmogorow lautet ja:

1.Nichtnegativität
Die Wahrscheinlichkeit ist positiv und liegt zwischen 0 und 100%
0 [mm] \le [/mm] P(A) [mm] \le [/mm] 1

2. Normierung
Die Wahrscheinlichkeit des sicheren Ereignis liegt bei 100%
P(Ergebnismenge) = 1

3.Additivität
Die Wahrscheinlichkeit, dass die Vereinigung mehrerer disjunkter Ereignisse eintritt ist gleich der Summe der Einzelwahrscheinlichkeiten.
P (A1 [mm] \cup... \cupAn) [/mm] = P(A1)+... P(An)

Also ich weiss wie ich daraus  [mm] P(\overline{A}) [/mm] = 1-P(A) herleite, aber ich denke nicht das mir das bei dieser Aufgabenstellung behilflich ist.
Deshalb fehlt mir der Ansatz zum Beweis und ich komme, wie schon erwähnt, nicht recht weiter.
Könnt ihr mir vll. behilflich sein, so dass ich es auch verstehe (also mit Erklärung)?
Das wäre superlieb!
Vielen Dank im voraus!!

Lg, Sabrina


        
Bezug
Kolmogorow: Antwort
Status: (Antwort) fertig Status 
Datum: 18:49 Di 29.11.2005
Autor: Zwerglein

Hi, Bina,

> Beweisen Sie: Wenn bei Wahrscheinlichkeit nach der
> Definition von Kolmogorow A und B unabhängig ist, dann ist
> auch A von [mm] \overline{B} [/mm] unabhängig [mm] \overline{B}[/mm]  [mm]\not=[/mm]
> 0)

Echt 'ne blöde Aufgabe.

Also: Du weißt:
P(A [mm] \cap [/mm] B) = P(A)*P(B), da A und B unabhängig sein müssen.

Du sollst zeigen, dass dann auch  
P(A [mm] \cap \overline{B}) [/mm] = [mm] P(A)*P(\overline{B}) [/mm] gilt.

Alsdann:
P(A [mm] \cap \overline{B}) [/mm] = P(A) - P(A [mm] \cap [/mm] B) = P(A) - P(A)*P(B) (laut Voraussetzung!)
= P(A)*(1 - P(B)) = P(A) * [mm] P(\overline{B}) [/mm]   q.e.d.

mfG!
Zwerglein



Bezug
                
Bezug
Kolmogorow: Tausend Dank
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:39 Fr 02.12.2005
Autor: Bina02

Vielen, vielen Dank für die Hilfe, habe mich noch einmal in diesen Beweis eingearbeitet um es, dank dir, nachvollziehen zu können :)
Deshalb auch erst jetzt die Antwort ;)

Also nochmals DANKESCHÖÖÖÖÖN,

Die Bina :)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de