www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Sonstiges" - Kombinatorik
Kombinatorik < Sonstiges < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kombinatorik: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 21:48 Sa 21.01.2006
Autor: SonyS

Aufgabe
Wie viele Permutationen as saemtlichen 26 Grosbuchstaben des Alphabets beginen mit:
a) MANUSKRIPT?
b) STATISTIK?

Hallo,
ich habe die folgende Hausaufgabe bekommen und habe nicht wirklich ne Idee wie ich sie loesen soll.
Also bei a) denke ich, dass man von 26 Buchstaben die 10 rausholen muss, dann bekommt man 16!.
Das soll auch stimmen, laut meiner Loesungsblatt.
Aber bei b) weiss ich wirklich nicht wie ich das berechnen soll. Ich soll da 0 bekommen....
Kann mir irgendjemand da helfen?

Danke im Vorraus.:)

        
Bezug
Kombinatorik: Antwort
Status: (Antwort) fertig Status 
Datum: 00:07 So 22.01.2006
Autor: masha

Hallo,

Es kommt drauf an, ob bei dir in deiner Aufgabe die Permutation als Permutation ohne Wiederholung (n verschiedene Elemente werden auf n Plätzen verteilt) oder als Permutation mit Wiederholung [mm] (n_1,...,n_k [/mm] Elemente sind ununterscheidbar, [mm] n_1+...+n_2=n [/mm] und werden auf den n Plätzen verteilt) betrachtet wird.

> Wie viele Permutationen as saemtlichen 26 Grosbuchstaben
> des Alphabets beginen mit:
>  a) MANUSKRIPT?
>  b) STATISTIK?
>  Hallo,
> ich habe die folgende Hausaufgabe bekommen und habe nicht
> wirklich ne Idee wie ich sie loesen soll.
> Also bei a) denke ich, dass man von 26 Buchstaben die 10
> rausholen muss, dann bekommt man 16!.

[ok] : 10 Plätze sind mit dem Wort belegt und dann muss du 16 verschiedenen Buchstaben auf 16 Plätzen verteilen. [mm]P_{16}=16![/mm]

>  Das soll auch stimmen, laut meiner Loesungsblatt.
>  Aber bei b) weiss ich wirklich nicht wie ich das berechnen
> soll. Ich soll da 0 bekommen....

Wenn wir die Anzahl der Permutationen ohne Wiederholung suchen, kann es schon keine mehr sein, weil das Wort "Statistik" schon Wiederholungen von Buchstaben enthält.
Im anderen Fall, wenn Wiederholungen zulässig sind, hast du 9 belegte Plätze und dann sollst du
26 - 5 (S;T;A;I;K waren schon dabei) Buchstaben auf (26 - 9) Plätzen verteilen, es ergibt sich  [mm] 21^{17} [/mm] Möglichkeiten

>  Kann mir irgendjemand da helfen?
>  
> Danke im Vorraus.:)

Schöne Grüße

Bezug
                
Bezug
Kombinatorik: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:19 So 22.01.2006
Autor: masha

Hallo,

sorry, hier habe ich einen Fehler gefunden

>  Im anderen Fall, wenn Wiederholungen zulässig sind,
> hast du 9 belegte Plätze und dann sollst du
> 26 - 5 (S;T;A;I;K waren schon dabei) Buchstaben auf (26 -
> 9) Plätzen verteilen,

die Buchstaben in dem Fall können wieder auftreten
es ergibt sich  [mm]26^{17}[/mm]

LG

Bezug
                        
Bezug
Kombinatorik: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:08 So 22.01.2006
Autor: SonyS

Vielen Dank!

Ich habe nicht gedacht, dass es so einfach sein kann.:)

Danke nochmal.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de