www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - Kombinatorik
Kombinatorik < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kombinatorik: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:44 Mo 29.01.2007
Autor: Fry

Aufgabe
Zwei Würfel werden unabhängig geworfen, n є IN. Geben Sie ein diskretes Modell (Ω, P) an, stellen Sie die folgenden Ereignisse als Teilmengen von Ω dar und berechnen Sie die Wahrscheinlichkeit dieser Ereignisse:

a) Mindestens eine Doppelsechs wird geworfen;
b) Bei mindestens einem Wurf sind beide Augenzahlen ungerade;
c) Spätestens im k-ten Wurf sind beide Augenzahlen verschieden, 1 ≤ k ≤ n.

Hallo,

ich komme mit der Modellierung der Ergebnismenge und der Ereignisse nicht klar.Wie kann man die vernünftig aufschreiben ?
Bzw. kann mir jemand Tipps für die Berechnung der Wkeiten geben ?

MfG
FRY

        
Bezug
Kombinatorik: Antwort
Status: (Antwort) fertig Status 
Datum: 10:12 Mo 29.01.2007
Autor: Karl_Pech

Hallo Fry,


Wie ist es denn, wenn man die Aufgabe einfacher gestellt wäre? Gegeben seien zwei von einander unabhängige Laplace-Münzen mit jew. einer '1' auf der Einen und '0' auf der anderen Seite. Um zu beantworten, wie [mm]\Omega[/mm] hier aussieht, müßtest du bloß alle möglichen Fälle, die hier auftreten können durchprobieren. Also beide Münzen auf bleiben mit "'1' nach oben" liegen, eine Münze bleibt mit 'x', die Andere mit 'y' nach oben liegen, u.s.w. . Und dann schreibst du das halt kürzer z.B. {(1,1),...(x,y)...} und das wären alle möglichen Ergebnisse des Experiments. Und jetzt stelle dir eine Münze mit 6 Seiten vor... [happy]

Die anderen Aufgaben kannst du dann bearbeiten, indem du dir die Frage stellst: "Welche der Ergebnisse würden das gewünschte Ereignis hervorrufen, und wieviele Ergebnisse habe ich insgesamt?" Stell dir mal nur eine 0/1-Münze vor. Wie groß ist die Wahrscheinlichkeit, daß 0 fällt? Um das zu beantworten, mußt du wissen wieviele Ergebnisse hier möglich sind. Und welches davon hier das Gewünschte wäre.



Grüße
Karl




Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de