www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Stochastik" - Kombinatorik
Kombinatorik < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kombinatorik: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:42 Di 22.02.2005
Autor: clwoe

Hallo,

kann mir jemand sagen, warum gilt:

(n+1)! = n! * (n+1) und
(n-k)! = (n-k) * (n-k-1)!

Ich kann mir das nicht genau erklären.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Danke,
Dominic


        
Bezug
Kombinatorik: Antwort
Status: (Antwort) fertig Status 
Datum: 20:24 Di 22.02.2005
Autor: oliver.schmidt


> Hallo,
>  
> kann mir jemand sagen, warum gilt:
>  
> (n+1)! = n! * (n+1) und

n!= 1*2*3*4*...*n
(n+1)!=1*2*3*4*...*n*(n+1) = n!*n(+1)  erkennst du es jetzt ?

>  (n-k)! = (n-k) * (n-k-1)!

(n-k)!= 1*2*3*4*....*(n-k-1)*(n-k) = (n-k-1)!*(n-k)

geht dir ein Licht auf? ;-)

Gruss
Oliver

>  
> Ich kann mir das nicht genau erklären.
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  
> Danke,
>  Dominic
>  
>  

Bezug
        
Bezug
Kombinatorik: zusätzliche Hilfe
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:16 Mi 23.02.2005
Autor: Zwerglein

Hi, clwoe,

in solchen Fällen mach' ich mir den Sachverhalt immer erst an ein, zwei Beispielen klar.
Nimm doch für die erste Gleichung z.B. n=5; dann ist n+1=6.
(n+1)! ist dann bei uns: 1*2*3*4*5*6 =720
n! ist aber nur: 1*2*3*4*5. Um auch auf 720 zu kommen, muss man noch mit 6 multiplizieren; das aber ist n+1 (siehe oben!)

Oder die 2. Formel: Nehmen wir diesmal: n=7 und k=3 als Beispiel.
Dann ist n-k = 7-3 = 4 und demnach
(n-k)! = 4! = 1*2*3*4 = 24.
Nun die rechte Seite:
(n-k)*(n-k-1)! = 4*(7-3-1)! = 4*3! = 4*(1*2*3) = 24.  

Solche "Beispielsrechnungen sind natürlich niemals als "Beweis" anzusehen; aber sie helfen einem, den Überblick zu behalten!

mfG!
Zwerglein

Bezug
        
Bezug
Kombinatorik: Antwort
Status: (Antwort) fertig Status 
Datum: 10:57 Mi 23.02.2005
Autor: Hugo_Sanchez-Vicario

Hallo Dominik,

eine sehr einfache Erklärung, warum (n+1)!=n!(n+1) ist:
Die Fakultät von natürlichen Zahlen ist so definiert, d.h.
0!:=1 und 1!=1; ab n=1 gilt dann obige Regel, d.h. [mm] 2!=1!\cdot2 [/mm]

Es gibt also gar nichts Besonderes zu verstehen oder zu erklären.

Das wäre so, als würdest du versuchen zu beweisen, dass nach der 9 die 10 kommt. Aber das ist ja bereits durch den Aufbau unseres Zahlensystems so festgelegt.

Hugo

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de