www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Stochastik" - Kombinatorik
Kombinatorik < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kombinatorik: Aufgabe/ Frage
Status: (Frage) beantwortet Status 
Datum: 15:41 Sa 14.05.2005
Autor: melchen

Hallo alle Zusammen! Ich habe hier eine Aufgabe bei der ich mir bei meinem Ansatz nicht wirklich sicher bin und auch nicht wirklich weiter komme.. Hoffentlich kann jemand meine Lösung beurteilen und mir ein paar Denkanstöße geben. Vielen Dank im Vorraus!!

Aufgabe: Für ein Schulfest soll aus 12 Mitgliedern der Schülerverwaltung ein vierköpfiger Festausschuß gebildet werden
a) Wie vieler Möglichkeiten gibt es, den Festausschuß zusammenzusetzten?

Meine Idee hierbei war, dass es doch  12 über 4 Möglichkeiten geben muss oder??

b) Wie viele Möglichkeiten gibt es für die Zusammensetzung des Festausschusses, wenn zwei bestimmte Schüler der 12 Mitglieder auf keinern Fall zusammen im Festausschuß mitarbeiten wollen

Bei dieser Aufgabe bin ich etwas ratlos. Ich dachte mir, dass man von den 12 über 4 Möglichkeiten auf jeden fall noch was andres abziehen muss oder es wird ganz anders gerechnet.. Vielleicht mit Fakultät? ich bin sehr ratlos wie ihr seht..Bitte helft mir!!

Liebe Grüße Melchen

        
Bezug
Kombinatorik: Antwort
Status: (Antwort) fertig Status 
Datum: 16:24 Sa 14.05.2005
Autor: banachella

Hallo melchen!

Bei der ersten Aufgabe hast du recht: Es gibt [mm] $\vektor{12\\4}$ [/mm] Möglichkeiten, den Festausschuss zu besetzen.

Bei der zweiten Aufgabe gibt es zwei Wege zum Ziel, wie's dir lieber ist:
1. Von allen möglichen Kombinationen ziehst du die Anzahl ab, bei denen die zwei zerstrittenen Schüler dabei wären: [mm] $\vektor{12\\4}-\vektor{10\\2}$. [/mm]

2. Du addierst die Möglichkeiten, bei denen keiner, und bei denen einer der beiden im Festausschuss sitzt: [mm] $\vektor{10\\4}+2*\vektor{10\\3}$. [/mm]

Gruß, banachella


Bezug
                
Bezug
Kombinatorik: Danke!/ Frage
Status: (Frage) beantwortet Status 
Datum: 10:11 So 15.05.2005
Autor: melchen

Hey!
Danke für diese genaue antwort..Ich kann alles recht gut nachvollziehen. Es bleibt nur noch eine kleine Frage: wieso hast du bei der b) nur noch eine 10 anstatt eine 12 oben stehen ?.. muss man die zwei, die in den Ausschuß sitzen etwa von allen abziehen?

Wäre lieb wenn das noch jemand beantworten könnte..
Liebe Grüße Melchen

Bezug
                        
Bezug
Kombinatorik: Antwort
Status: (Antwort) fertig Status 
Datum: 14:54 So 15.05.2005
Autor: Max

Hallo Melchen,

der Binomialkoeffizient ${ 10 [mm] \choose [/mm] 4}$ gibt an, wie viele Möglichkeiten es gibt, vier Leute aus den 10 Mitgliedern der Schülerverwaltung auszuwählen, die keine Probleme mit der Zusammenarbeit haben. Es gibt noch weitere Möglichkeiten den Festausschuss zu besetzten, man kann aus den 10 Leuten die sich nicht streiten 3 auswählen und dazu einen der beiden Streithähne strecken. Das ergbit jeweils noch einmal die ${ 10 [mm] \choose [/mm] 3}$ Möglichkeiten, also insgesamt: ${ 10 [mm] \choose [/mm] 4}+ [mm] 2\cdot [/mm]  { 10 [mm] \choose [/mm] 3}$.

Gruß Max

Bezug
                                
Bezug
Kombinatorik: Vielen Danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 01:45 Mo 16.05.2005
Autor: melchen

Hey
Danke schön für eure schnelle Hilfe habs jetzt entgültig verstanden..!!!
*freu* Trotz allem wird das bestimmt nicht das letzte mal gewesen sein, wo ich in Mathe meine Schwierigkeiten hatte..Deshalb bin ich euch auf jeden Fall sehr dankbar..
Liebe Grüße
Melchen


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de