www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Kombinatorik" - Kombinatorik Vorstände bilden
Kombinatorik Vorstände bilden < Kombinatorik < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Kombinatorik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kombinatorik Vorstände bilden: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 08:52 Mi 25.05.2011
Autor: joe123

Aufgabe
Ein Sportclub mit 12 mannlichen und 5 weiblichen Mitarbeitern mochte einen Vorstand bestehend
aus einem Vorsitzenden und drei gleichrangigen Stellvertretern wahlen.
Die Anzahl der verschiedenen Vorstande, die sich bilden lassen und in denen mindestens eine
Frau verteten ist, beträgt?

Hallo,
ich habe mir zu der aufgabe schon gedanken gemacht. Leider komme ich aber irgendwie nicht drauf.

Wir haben ja 12 Männer und 5 Frauen.
was ich mir gedacht habe ist folgendes:
[mm] \vektor{12\\ 0}\vektor{5\\ 4}+\vektor{12\\ 1}\vektor{5\\ 3}+\vektor{12\\ 2}\vektor{5\\ 2}+\vektor{12\\ 3}\vektor{5\\ 1} [/mm]

Das Ergebnis erschien mir aber deutlich zu klein.
Wo ist mein Denkfehler?
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Kombinatorik Vorstände bilden: Antwort
Status: (Antwort) fertig Status 
Datum: 09:03 Mi 25.05.2011
Autor: Diophant

Hallo,

[willkommenmr]

dein Ergebnis ist richtig. Man kann es ganz schön kontrollieren, indem man zeigt, dass es noch einfacher zu rechnen geht: die Anzahl der Vorstände, in denen mindestens eine Frau vertreten ist, ist gleich der Anzahl aller möglichen Vorstände minus der Anzahl der möglichen Vorstände, in denen keine Frau vertreten ist (-> Komplementärereignis). Dies führt auf die Rechnung

[mm]\vektor{17 \\ 4}-\vektor{12 \\ 4}=1885[/mm]

und dieses Resultat kommt bei deiner Rechnung ja ebenfalls heraus.

Gruß, Diophant

Bezug
                
Bezug
Kombinatorik Vorstände bilden: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:36 Mi 25.05.2011
Autor: joe123

Hallo,
also ich habe hier aber ein Ergebnisblatt vorliegen , wonach das Ergebnis zwischen 7000 und 8000 liegen muss. Das genaue Ergebnis haben wir nicht bekommen. Nur ein Intervall.

Bezug
                        
Bezug
Kombinatorik Vorstände bilden: Korrektur
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:47 Mi 25.05.2011
Autor: Diophant

Hallo,

ja, du hast Recht: wir haben beide etwas entscheidendes übersehen: jeder mögliche Vorstand hat einen Vorsitzenden und drei Stellvertreter. Für jede Vierergruppe gibt es also 4 Möglichkeiten, macht also:

1885*4=7540

Sorry, ich hatte das übersehen.

Gruß, Diophant

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Kombinatorik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de