www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Algebra" - Kommutative Gruppe
Kommutative Gruppe < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kommutative Gruppe: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 15:16 So 29.01.2006
Autor: jennyf

Aufgabe
Es sei G eine Gruppe mir dem Zentrum Z(G) und N ein Normalteiler von G mit [mm] N\subset [/mm] Z(G) und G/N zyklisch. Zu zeigen: G ist kommutativ.

Meine Problem beim Beweis der obigen Aussage ist folgender:
Ich weiß, da G/N zyklisch, dass G/N kommutativ ist. Außerdem weiß ich das N kommutativ ist.
Nehmen wir uns zwei Elemente (N [mm] \* [/mm] a), (N [mm] \* [/mm] b) aus G/N.
[mm] \Rightarrow:(N \* [/mm] a) [mm] \*' [/mm] (N [mm] \* [/mm] b) = N  [mm] \*' [/mm] (a [mm] \* [/mm] b)
Kann ich dann sagen, dass das gleiche ist wie N [mm] \*' [/mm] (b [mm] \* [/mm] a)?
Wenn ja habe ich dann nämlich am Ende stehen: (N [mm] \* [/mm] a) [mm] \*' [/mm] (N [mm] \* [/mm] b) = (N [mm] \* [/mm] b) [mm] \*' [/mm] (N [mm] \* [/mm] a)

Oder muss ich den Beweis ganz anders Anfangen um zu zeigen, dass G kommutativ ist?
Ich wäre euch für einen Tipp bzw. für eure Hilfe sehr dankbar.

        
Bezug
Kommutative Gruppe: Antwort
Status: (Antwort) fertig Status 
Datum: 18:52 So 29.01.2006
Autor: CHP

Hallo Jenny,
deine Rechnungen sind zwar soweit in Ordnung, ich sehe aber nicht, dass sie zum Ziel führen. Dazu muss man ausnutzen, dass G/N zyklisch ist (und nicht nur kommutativ), also etwa:
[mm]G/N = < Ng > = \{ N , Ng , Ng^2 , ... \}[/mm]
für ein geeignetes [mm] g \in G [/mm].
Ist nun a ein beliebiges Element aus G, so lässt sich die zugehörige Restklasse stets in der Form [mm]Na=Ng^i[/mm] schreiben, man erhält also [mm]a=ng^i[/mm] mit einem geeigneten [mm] n \in N[/mm].
Ist b ein weiteres Element aus G, s erhält man analog [mm]b=n'g^j[/mm] für ein [mm] n' \in N[/mm]. Nutzt man nun aus, dass N im Zentrum enthalten ist, so erhält man sehr schnell ab=ba.

Bezug
                
Bezug
Kommutative Gruppe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:33 Mo 06.02.2006
Autor: jennyf

Wenn ich mir dann solche Elemente a und b [mm] \in [/mm] G nehme und so wie angeben schreibe also in der Form:
a = [mm] n\* g^i [/mm] und b = [mm] n'\* g^j [/mm]
dann folgt:
[mm] a\*b [/mm] = [mm] n\* g^i \*n' \* g^j =n'\* g^j \*n \* g^i [/mm]  = [mm] b\* [/mm] a
da [mm] n\* g^i [/mm] , [mm] n'\* g^j \in [/mm] G/N

Kann man den Beweis auch so machen?
Ansonsten weiß ich nämlich nicht wie es gehen soll. Kann auch sein, dass ich einfach auf dem Schlauch stehe und denn richtigen Weg nicht sehe.  

Bezug
                        
Bezug
Kommutative Gruppe: Antwort
Status: (Antwort) fertig Status 
Datum: 17:49 Mo 06.02.2006
Autor: banachella

Hallo!

Dein Lösungsweg ist in der Tat richtig. Beachte allerdings, dass $n*n'=n'*n$ nur, weil [mm] $N\subseteq [/mm] Z(G)$!

Gruß, banachella

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de