www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Kommutative Matrizen
Kommutative Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kommutative Matrizen: Ich brauche einen Ansatz!
Status: (Frage) beantwortet Status 
Datum: 16:31 Do 23.12.2004
Autor: FastJack99

Moin, ich wäre für eine Hilfestellung echt dankbar. Folgende Aufgabe ist gestellt: Für eine Matrix A= [mm] \begin{pmatrix} 1 & 0 & 0 \\ 3 & 4 & 0 \\ 1 & 2 & 1 \end{pmatrix} [/mm]

soll gelten A*B = B*A bestimmen Sie alle B für die das gilt.

Kann mir jemand einen Ansatz geben ?? Die einzige Matrix, die ich gefunden habe ist die inverse zu A. Es gibt aber wohl unendlich viele....

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Danke für die Hilfe


        
Bezug
Kommutative Matrizen: ein paar Ideen
Status: (Antwort) fertig Status 
Datum: 18:51 Do 23.12.2004
Autor: Bastiane

Hallo!
> Moin, ich wäre für eine Hilfestellung echt dankbar.
> Folgende Aufgabe ist gestellt: Für eine Matrix A=
> [mm]\begin{pmatrix} 1 & 0 & 0 \\ 3 & 4 & 0 \\ 1 & 2 & 1 \end{pmatrix} [/mm]
>  
>
> soll gelten A*B = B*A bestimmen Sie alle B für die das
> gilt.
>  
> Kann mir jemand einen Ansatz geben ?? Die einzige Matrix,
> die ich gefunden habe ist die inverse zu A. Es gibt aber
> wohl unendlich viele....

Also, lösen kann ich deine Aufgabe leider nicht, aber vielleicht etwas helfen:
Natürlich kannst du deine Matrix mit der Einheitsmatrix multiplizieren, und dieses Produkt ist kommutativ. Und so weit ich weiß, geht das mit jeder Diagonalmatrix, also mit jeder Matrix, bei der nur auf der Diagonalen Einträge [mm] \not= [/mm] 0 stehen. Und ich würde vermuten, dass es vielleicht noch mit einer unteren Dreiecksmatrix klappt. Du hast ja hier auch schon eine untere Dreiecksmatrix, und wenn man zwei untere Dreiecksmatrizen mutlipliziert, erhält man wieder eine untere Dreiecksmatrix. Da hättest du dann schon mal in beiden Fällen (A*B und B*A) den rechten oberen Teil gleich. Und die Diagonale müsste auch beide Male gleich sein. Mit dem Rest musst du mal ausprobieren, das weiß ich leider auch nicht.

Vielleicht hilft dir das ja... Viele Grüße
Bastiane
[banane]

Bezug
        
Bezug
Kommutative Matrizen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:55 Do 23.12.2004
Autor: Marc

Hallo FastJack99,

> Moin, ich wäre für eine Hilfestellung echt dankbar.
> Folgende Aufgabe ist gestellt: Für eine Matrix A=
> [mm]\begin{pmatrix} 1 & 0 & 0 \\ 3 & 4 & 0 \\ 1 & 2 & 1 \end{pmatrix} [/mm]
>  
>
> soll gelten A*B = B*A bestimmen Sie alle B für die das
> gilt.
>  
> Kann mir jemand einen Ansatz geben ?? Die einzige Matrix,
> die ich gefunden habe ist die inverse zu A. Es gibt aber
> wohl unendlich viele....

Versuch' es mal mit der Holzhammer-Methode: Nehme eine allgemeine [mm] $3\times3$-Matrix [/mm] her und leite daraus die 9 Gleichungen für die Komponenten ab:

[mm] $B=\pmat{b_{11}&\ldots&b_{13}\\\vdots&\ddots&\vdots\\b_{31}&\ldots&b_{33}}$ [/mm]

$AB=BA$
[mm] $\gdw$ $\ldots$ [/mm]

Viel Erfolg,
Mrc

Bezug
                
Bezug
Kommutative Matrizen: LGS
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:47 Do 23.12.2004
Autor: MathePower

Hallo,

stelle einfach das lineare Gleichungssystem auf.

[mm]$\[ \left( {\begin{array}{*{20}c} 1 & 0 & 0 \\ 3 & 4 & 0 \\ 1 & 2 & 1 \\ \end{array}} \right)\;\left( {\begin{array}{*{20}c} {b_{11} } & {b_{12} } & {b_{13} } \\ {b_{21} } & {b_{22} } & {b_{23} } \\ {b_{31} } & {b_{32} } & {b_{33} } \\ \end{array}} \right)\; = \;\left( {\begin{array}{*{20}c} {b_{11} } & {b_{12} } & {b_{13} } \\ {b_{21} } & {b_{22} } & {b_{23} } \\ {b_{31} } & {b_{32} } & {b_{33} } \\ \end{array}} \right)\;\left( {\begin{array}{*{20}c} 1 & 0 & 0 \\ 3 & 4 & 0 \\ 1 & 2 & 1 \\ \end{array}} \right) \]$[/mm]

Hieraus bekommst Du Bedingungen fuer die Matrix B.

Gruss
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de