www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gruppe, Ring, Körper" - Kommutativität, Assoziativität
Kommutativität, Assoziativität < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kommutativität, Assoziativität: in Q+
Status: (Frage) beantwortet Status 
Datum: 16:47 Mi 30.12.2009
Autor: slash

Aufgabe
Warum gilt in den Natürlichen Zahlen und den nichtnegativen Zahlen das Kommutativ- und Assoziativgesetz?

Hallo,
Ich unterrichte demnächst beide Gesetze in einer sechsten Klasse und muss in der Sachanalyse die obigen Fragen beantworten.

Ich kann ja nicht einfach sagen, dass es abel'sche Halbgruppen/Gruppoide sind, weil das ja kein Beweis wäre.

Hilfe ist erwünscht.
Danke, slash.

        
Bezug
Kommutativität, Assoziativität: Antwort
Status: (Antwort) fertig Status 
Datum: 18:59 Mi 30.12.2009
Autor: steppenhahn

Hallo jake,

ich denke, dir ist klar, dass in der sechsten Klasse niemanden interessiert, warum man zwei nichtnegative Zahlen vertauschen darf oder Klammern setzen darf.
Da reicht einfach das Argument: "Das ist ja klar. Wenn ich 5+6 rechne oder 6+5, da kommt natürlich dasselbe raus" bzw. "Ob ich nun bei 4+5+6 zuerst 4+5 ausrechne und danach 6 dazuaddiere oder umgekehrt, ist auch egal, oder?" :-).
(Notfalls mit Äpfeln verdeutlichen, wird aber in der sechsten Klasse nicht mehr notwendig sein).

Zu den Formalien: Ich weiß jetzt zwar nicht genau, was eine "Sachanalyse" ist, aber wenn du das sozusagen vorher theoretisch abhandeln musst:

- Dass das Assoziativgesetz und das Kommutativgesetzen in den natürlichen Zahlen gelten, beweist du mit den Peano-Axiomen (Induktion). Für das Kommutativgesetz nutzt du dann doppelte Induktion (Ausgangspunkt: m+n = n+m, dann Induktion über n, und in dieser Induktion nochmal Induktion über m), für das Assoziativgesetz ähnlich; []Hier kannst du dir die Ideen holen bzw. es nachlesen.

- Die rationalen Zahlen werden ja aus den ganzen bzw. natürlichen Zahlen über Äquivalenzklassen definiert. Es sollte dann nicht schwer zu zeigen sein, dass alle Gesetze "vererbt" werden, wenn du zusätzlich ohne Einschränkung forderst, dass sowohl Zähler als auch Nenner natürliche Zahlen sind. []Hier zur Erinnerung die Definition der rationalen Zahlen.

Grüße,
Stefan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de