Kommutator < Physik < Naturwiss. < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 16:11 Fr 30.07.2010 | Autor: | mb588 |
Aufgabe | Berechnen Sie folgenden Kommutator:
[mm] [\hat{x},\hat{L}_{y}] [/mm] |
Hallo.
Ich brauch hier nur mal eine kleine Hilfe. Soweit bin ich bereits:
[mm] [\hat{x},\hat{L}_{y}]=[\hat{x},\hat{z}\hat{p}_{x}-\hat{x}\hat{p}_{z}]=[\hat{x},\hat{z}\hat{p}_{x}]+[\hat{x},-\hat{x}\hat{p}_{z}]=[\hat{x},\hat{z}]\hat{p}_{x}+\hat{z}[\hat{x},\hat{p}_{x}]-[\hat{x},\hat{x}]\hat{p}_{z}-\hat{x}[\hat{x},\hat{p}_{z}]=[\hat{x},\hat{z}]\hat{p}_{x}+\hat{z}i\overline{h}-0-0=i\overline{h}\hat{z}+\hat{x}\hat{z}\hat{p}_{x}-\hat{z}\hat{x}\hat{p}_{x} [/mm]
Das der vorletzte Summand Null wird liegt daran das [mm] [\hat{x},\hat{x}] [/mm] vertauschen, da [mm] \hat{x}\hat{x}-\hat{x}\hat{x}=0 [/mm] ist und der letzte Summand wird Null, da die Vertauschungrelation gilt, also [mm] [\hat{x}_{i},\hat{p}_{x_{j}}]=i\overline{h}\delta_{i,j} [/mm] gilt für [mm] \hat{x}_{i}=\hat{x},\hat{y},\hat{z}.
[/mm]
Kann man das jetzt noch weiter ausrechnen bzw. zusammenfassen?
Dank für die Antwort.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 12:12 Sa 31.07.2010 | Autor: | Kroni |
Hi,
> Berechnen Sie folgenden Kommutator:
>
> [mm][\hat{x},\hat{L}_{y}][/mm]
> Hallo.
> Ich brauch hier nur mal eine kleine Hilfe. Soweit bin ich
> bereits:
>
> [mm][\hat{x},\hat{L}_{y}]=[\hat{x},\hat{z}\hat{p}_{x}-\hat{x}\hat{p}_{z}]=[\hat{x},\hat{z}\hat{p}_{x}]+[\hat{x},-\hat{x}\hat{p}_{z}]=[\hat{x},\hat{z}]\hat{p}_{x}+\hat{z}[\hat{x},\hat{p}_{x}]-[\hat{x},\hat{x}]\hat{p}_{z}-\hat{x}[\hat{x},\hat{p}_{z}]=[\hat{x},\hat{z}]\hat{p}_{x}+\hat{z}i\overline{h}-0-0=i\overline{h}\hat{z}+\hat{x}\hat{z}\hat{p}_{x}-\hat{z}\hat{x}\hat{p}_{x}[/mm]
>
> Das der vorletzte Summand Null wird liegt daran das
> [mm][\hat{x},\hat{x}][/mm] vertauschen, da
> [mm]\hat{x}\hat{x}-\hat{x}\hat{x}=0[/mm] ist und der letzte Summand
> wird Null, da die Vertauschungrelation gilt, also
> [mm][\hat{x}_{i},\hat{p}_{x_{j}}]=i\overline{h}\delta_{i,j}[/mm]
> gilt für [mm]\hat{x}_{i}=\hat{x},\hat{y},\hat{z}.[/mm]
>
> Kann man das jetzt noch weiter ausrechnen bzw.
> zusammenfassen?
>
ja, das kann man noch weiter zusammenfassen (Ich lasse aber die [mm] $\hat$ [/mm] weg bei den Operatoren):
[mm] $[x,L_y] [/mm] = [mm] [x,z]p_x [/mm] + [mm] z[x,p_x]$ [/mm] wie du richtig ausgerechnet hast. Nun gilt aber: $[x,z]=0$, denn, wenn dus dir zB in Ortsraumdarstellung anschaust, sind [mm] $\hat{x} [/mm] = x$ und [mm] $\hat{z} [/mm] = z$, also $xz = zx [mm] \Rightarrow [/mm] [x,z] = 0$, oder, allgemeiner:
[mm] $[x_i,x_j] [/mm] = 0 [mm] \quad \forall i,j=1,\ldots,n$ [/mm] mit [mm] $n=\mathrm{dim}V$, [/mm] also in unserem Fall $n=3$.
Damit faellt dann auch der letzte Term weg, und es bleibt nur noch der erste ueber.
Achso, wenn man sich die Sache mit dem Kreuzprodukt ersparen will, dann ist es ab und zu ganz nuetzlich, den Levi-Civita-Tensor [mm] $\epislon_{ijk}$ [/mm] einzufuehren, um damit das Kreuzprodukt auszudruecken (d.h. [mm] $(a\times b)_i [/mm] = [mm] \epsilon_{ijk} a_j b_k$), [/mm] aber das ist nur ein anderer Weg, der ab und zu schneller geht, als alles 'per Hand' auszurechnen.
LG
Kroni
> Dank für die Antwort.
|
|
|
|